Building Constraint Solvers with HAL

Marfa Garcia de la Banda!, David Jeffery!, Kim Marriott!, Nicholas
Nethercote?, Peter J. Stuckey?, and Christian Holzbaur®

1 School of Comp. Sci. & Soft. Eng., Monash University, Australia.
{mbanda,dgj,marriott }@csse.monash.edu.au
2 Dept. of Comp. Sci. & Soft. Eng., University of Melbourne, Australia.
{njn,pjs}Qcs.mu.oz.au
3 Dept. of Medical Cybernetics and Art. Intel., University of Vienna, Austria
christian@ai.univie.ac.at

Abstract. Experience using constraint programming to solve real-life
problems has shown that finding an efficient solution to a problem often
requires experimentation with different constraint solvers or even build-
ing a problem-specific solver. HAL is a new constraint logic programming
language expressly designed to facilitate this process. In this paper we
examine different ways of building solvers in HAL. We explain how type
classes can be used to specify solver interfaces, allowing the constraint
programmer to support modelling of a constraint problem independently
of a particular solver, leading to easy “plug and play” experimentation.
We compare a number of different ways of writing a simple solver in HAL:
using dynamic scheduling, constraint handling rules and building on an
existing solver. We also examine how external solvers may be interfaced
with HAL, and approaches for removing interface overhead.

1 Introduction

There is no single best technique for solving combinatorial optimization and
constraint satisfaction problems. Thus, constraint programmers would like to be
able to easily experiment with different constraint solvers and to readily develop
new problem-specific constraint solvers. The new constraint logic programming
(CLP) language HAL [3] has been specifically designed to allow the user to easily
experiment with different constraint solvers over the same domain, to support
extension of solvers and construction of hybrid solvers, and to call procedures
(in particular, solvers) written in other languages with little overhead.

In order to do so, HAL provides semi-optional type, mode and determinism
declarations for predicates and functions. These allow the generation of efficient
target code, ensure that solvers and other procedures are being used in the cor-
rect way, and facilitate efficient integration with foreign language procedures.
Type information also means that predicate and function overloading can be
resolved at compile-time, allowing a natural syntax for constraints. To facilitate
writing simple constraint solvers, extending existing solvers and combining them,
HAL provides dynamic scheduling by way of a specialized delay construct which

supports definition of “propagators.” Finally, HAL provides “global variables”
which allow efficient implementation of a persistent constraint store. They be-
have in a similar manner to C’s static variables and are only visible within the
module in which they are defined.

The initial design of HAL was described in [3]. The current paper extends
this in five main ways. First, we describe how the addition of type classes pro-
vides a natural way of specifying a constraint solver’s capabilities and, therefore,
support for “plug and play” with solvers. Second, we give a more detailed de-
scription of how HAL supports solver dependent dynamic scheduling and its use
in writing solvers. Third, we describe how to integrate foreign language solvers
into HAL and some programming techniques for reducing the runtime overhead
of the solver interface. Fourth, we discuss the integration of constraint handling
rules (CHRs) into HAL. Finally, we compare the efficiency of solvers written in
HAL using CHRs, dynamic scheduling and type classes with comparable solvers
written in SICStus and compare the overhead of HAL’s external solver interface
for CPLEX with that of ECLiPSe.

Thus, the main focus of the current paper is how to provide generic mecha-
nisms such as type classes, dynamic scheduling and CHRs for structuring, writ-
ing and extending constraint solvers in a constraint programming language with
type, mode and determinism declarations and what, if any, performance advan-
tage is provided by this additional information.

2 The HAL Language

In this section we provide a brief overview of HAL [3], a CLP language which
is compiled to the logic programming language Mercury [15].! The basic HAL
syntax follows the standard CLP syntax, with variables, rules and predicates
defined as usual (see, e.g., [14] for an introduction to CLP). The module system
in HAL is similar to that of Mercury. A module is defined in a file, it imports the
modules it uses and has export annotations on the declarations of the objects
that it wishes to be visible to those importing the module. Selective importation
is also possible. The core language supports the basic integer, float, string, and
character data types plus polymorphic constructor types (such as lists) based
on these basic types. This support is, however, limited to assignment, testing
for equality, and construction and deconstruction of ground terms. More sophis-
ticated constraint solving is provided by importing a constraint solver for each
type involved.

As a simple example, the following program is a HAL version of the now
classic CLP program mortgage.

:- module mortgage. (L1)
:- import simplex. (L2)
:- export pred mortgage(cfloat,cfloat,cfloat,cfloat,cfloat). (L3)

! The key difference between them is that Mercury does not support constraints and
constraint solvers. In fact, Mercury only provides a limited form of unification.

- mode mortgage (00,00,00,00,00) is nondet. (L4)
mortgage(P,0.0,I,R,P). (R1)
mortgage (P, T,I,R,B) :- T >= 1.0, mortgage(P+P*I-R,T-1.0,I,R,B). (R2)

Line (L1) states that this file defines the module mortgage. Line (L2) im-
ports a module called simplex. This module provides a simplex-based linear
arithmetic constraint solver for constrained floats, called cfloats. Line (L3) ex-
ports the predicate mortgage which takes five cfloats as arguments. This is the
type declaration for mortgage. A type specifies the representation format of a
variable. Thus, for example, the type system distinguishes between constrained
floats (cfloat) and standard numerical floats (float) since they have a dif-
ferent representation. Types are defined using (polymorphic) regular tree type
statements. For instance, the 1ist/1 constructor type is defined by

:- typedef list(T) -> [1; [TIlist(T)].

Line (L4) provides a mode declaration for mortgage. Mode declarations
associate a mode with each argument of a predicate. A mode is a mapping
Inst; — Insts where Insty and Inst, describe the instantiation of an argument
on call and on success from the predicate, respectively. The base instantiations
are new, old and ground. Variable X is new if it has not been seen by the con-
straint solver, old if it has, and ground if X is constrained to take a fixed value.
Note that old is interpreted as ground for variables of non-solver types (i.e.,
types for which there is no solver). The base modes are mappings from one base
instantiation to another: we use two letter codes (oo, no, og, gg, ng) based on the
first letter of the instantiation, e.g. ng is new—ground. The standard modes in
and out are renamings of gg and ng, respectively. Therefore, line (L4) declares
that each argument of mortgage has mode oo, i.e., takes an old variable and
returns an old variable.

More sophisticated instantiations (lying between old and ground) may be
used to describe the state of complex terms. Instantiation definitions look like
type definitions. For example, the instantiation definition

:- instdef fixed_length_list -> ([] ; [old | fixed_length_list]).

indicates that the variable is bound to either an empty list or a list with an o1d
head and a tail with the same instantiation.

Line (L4) also states the determinism for this mode of mortgage, i.e., how
many answers it may have. We use the Mercury hierarchy: nondet means any
number of solutions; multi at least one solution; semidet at most one solution;
det exactly one solution, failure no solution and erroneous a run-time error.

The rest of the file contains the standard two rules defining mortgage.

3 Constraint Solvers and Type Classes

Type classes [13,17] support constrained polymorphism by allowing the pro-
grammer to write code which relies on a parametric type having certain associ-
ated predicates and functions. More precisely, a type class is a name for a set

of types for which certain predicates and/or functions, called the methods, are
defined. Type classes were first introduced in functional programming languages
Haskell and Clean, while Mercury and CProlog were the first logic programming
languages to include them [12,4]. We have recently extended HAL to provide
type classes similar to those in Mercury. One major motivation is that they pro-
vide a natural way of specifying a constraint solver’s capabilities and, therefore,
support for “plug and play” with solvers.

A class declaration defines a new type class. It gives the names of the type
variables which are parameters to the type class, and the methods which form
its interface. As an example, one of the most important built-in type classes in
HAL is that defining types which support equality testing:

:- class eq(T) where [
pred T =T,
mode oo = oo is semidet].
Instances of this class can be specified, for example, by the declaration

:- instance eq(int).

which declares the int type to be an instance of the eq/1 type class. For this to
be correct, the module must either define the method =/2 with type int=int and
mode oo=00 is semidet in the current module or indicate that it is a renaming
of some other predicate.

We note that all types in HAL (like Mercury) have an associated “equality”
for modes in=out and out=in, since these correspond to an assignment. Most
types also support testing for equality, the main exception being for types that
contain higher-order predicates. Thus, by default, HAL automatically generates
instance declarations of the above form and the definition of =/2 methods for
all constructor types which contain types supporting equality.

Type classes allow us to naturally capture the notion of a type having an
associated constraint solver: It is a type for which there is a method for initialis-
ing variables and a method for true equality. Thus, we define the solver/1 type
class to be:

:— class solver(T) <= eq(T) where [

pred init(T),

mode init(no) is det].
This indicates that the solver/1 type class provides an initialisation method
init/1 and that solver/1 is a subclass of eq/1 and, thus, any instance of
solver/1 must also be an instance of eq/1. Therefore, for type T to be in the
solver/1 type class, there must exist predicates init/1 and =/2 for this type
with mode and determinism as shown.

Constructor types can be automatically declared to be instances of the solver/1
type class using the notation deriving solver. The compiler then automati-
cally generates an appropriate instance declaration and the predicate init/1.
Variables whose type is not an instance of solver/1 are not true logic variables,
i.e., they are like Mercury terms since they must either be new or bound to
a functor of the type. Thus, the type declaration given earlier for lists defines
Mercury terms which have a fixed length while

:— typedef hlist(T) -> [1; [T|hlist(T)] deriving solver.

defines true “Herbrand” lists.

Class constraints can appear as part of a predicate or function’s type signa-
ture. They constrain the variables in the type signature to belong to particular
type classes. Class constraints are checked and inferred during the type checking
phase except for those of type classes solver/1 and eq/1 which must be treated
specially because they might vary for different modes of the same predicate. In
the case of solver/1, this will be true if the HAL compiler inserts appropriate
calls to init/1 for some modes (those in which the argument is initially new) but
not in others. In the case of eq/1, this will be true if equalities are found to be
assignments or deconstructions in some modes but true equalities in others. As a
result, it is not until after mode checking that we can determine which variables
in the type signature should be instances of eq/1 and/or solver/1. Unfortu-
nately, mode checking requires type checking to have taken place. Hence, the
HAL compiler includes an additional phase after mode checking, where newly
inferred solver/1 and eq/1 class constraints are added to the inferred types of
procedures for modes that require them. Note that, unlike for other classes, if
the declared type for a predicate does not contain the inferred class constraints,
this is not considered an error, unless the predicate is exported.?

To illustrate the problem, consider the predicate

:— pred append(list(T),1list(T),list(T)).

:- mode append(in,in,out) is det.

:- mode append(in,out,in) is semidet.

append ([],Y,Y).

append ([A1X1], Y, [A]Z1]) :- append(X1,Y,Z1).

During mode checking, the predicate append is compiled into two different pro-
cedures, one for each mode of usage (indicated by the keyword implemented. by).
Conceptually, the code after mode checking is

:- pred append(list(T),1ist(T),1list(T)) implemented_by [append_1, append_2].
:- mode append_1(in,in,out) is det.

append_1(X,Y,Z) :- X =:= [1, Z := Y.

append-1(X,Y,Z) :- X [A|X1], append_1(X1,Y,Z1), Z := [A|Z1].

:- mode append_2(in,out,in) is semidet.

append_2(X,Y,Z) :- X =:= [1, Y := Z.

append_2(X,Y,Z) :- X [AlX1], Z =: [BIZ1], A =:= B, append_2(X1,Y,Z1).

where =:=, :=, =: indicate calls to =/2 with mode (in,in), (out,in) and
(in,out), respectively. It is only now that we see that for the second mode
the parametric type T must allow equality testing (be an instance of the eq/1
class), because we need to compare A and B. Thus, in an additional phase of type

inference the HAL compiler infers
:- pred append_2(1ist(T),list(T),1ist(T)) <= eq(T).

2 Exported predicates need to have all their information available to ensure correct
modular compilation. We plan to remove this restriction when the compiler fully
supports cross module optimizing compilation [1].

Any predicates calling append_2 will also inherit the eq(T) class constraint in
their type.

This is a new problem for type classes and multi-moded predicates which does
not arise in functional programming. While the same problem arises in Mercury
for equality, it is side-stepped by not supporting an anologue of the eq/1 class:
effectively all types are required to support equality for mode =(in,in). This
may lead to run-time errors (e.g., when using append-2 on lists of predicates).
Since such errors are caught at compile-time by our two phase scheme, we believe
our approach provides a better solution.

HAL provides a hierarchy of pre-defined type classes for common constraint
domains which derive from the solver type class: bool_solver, linfloat_solver,
float_solver, linint_solver, and int_solver. They provide a standard in-
terface to solvers, thus facilitating “plug and play” experimentation by allowing
separate compilation of the constraint models from the solvers that they use. As
a result, we can rewrite the type declaration for mortgage to

:- export pred mortgage(T, T, T, T, T) <= float_solver(T).

thus allowing it to use any solver defined as an instance of float_solver.

Other important subclasses of the solver type class are herbrand (which
includes as instances all constructor types declared as deriving solver) and
its subclass the prolog type class. The role of the herbrand type class is to
distinguish between constructor types and other user defined solver types. The
prolog class requires the type to support a number of non-logical operations
commonly used in Prolog style programming. For instance, it provides var/1
and nonvar/1 to test if a variable is still uninstantiated or not and standard
functions to access the components of a term such as functor. It also provides
the method ===/2 which succeeds only if both its arguments are variables and
constrained to be equal.

A constructor type can be declared to support the Prolog built-ins by an-
notating the type declaration with deriving prolog rather than deriving
solver. In this case, the compiler automatically generates definitions for a
prolog class methods as well as those for the solver class. Distinguishing be-
tween herbrand and prolog allows the HAL compiler to differentiate between
types which are used logically from those which are not (useful for optimization).

4 Dynamic Scheduling

An important feature of the HAL language is a form of “persistent” dynamic
scheduling designed specifically to support constraint solving. A delay construct
is of the form

condi ==> goal: || --- || cond, ==> goal,

where the goal goal; will be executed when delay condition cond; is satisfied.
By default, delayed goals remain active and are reexecuted whenever their delay
condition becomes true again. This is useful, for example, if the delay condition

is “the lower bound has changed.” However, delayed goals may also contain calls
to the special predicate ki11/0 which kills all delayed goals in the immediate
surrounding delay construct; that is, these goals will no longer be active.

The delay construct of HAL is designed to be extensible, so that programmers
can build constraint solvers that support delay. In order to do so, one must create
an instance of the delay/2 type class defined as follows:

:- class delay_id(I) where [
pred get_id(I),
mode get_id(out) is det,
pred kill(I),
mode kill(in) is det].
:- class delay(D,I) <= delay_id(I) where [
pred delay(D, I, pred),
mode delay(oo, in, in(pred is semidet)) is semidet J].

where type I represents the unique identifier (id) of each delay construct, get_id/1
returns an unused id, k111/1 causes all goals delayed for the input id to no longer
wake up, type D represents the supported delay conditions, and delay/3 takes a
delay condition, an id and a goal,® and stores the information in order to execute
the goal whenever the delay condition holds.

The separation of the delay type class into two parts allows different solver
types to share delay ids. Thus, we can build delay constructs which involve more
than one solver as long as they use a common delay id (the original design of
delay [3] did not allow this).

The HAL compiler translates the delay construct into the base delay methods
provided by the classes. Thus, the delay construct shown above is translated into:

get_id(Id), delay(cond:,Id,goal), ..., delay(cond,,Id,goal,)

where each call to kill/0 in a goal; is replaced by a call to kill(Id).

Most modern logic programming languages allow predicates or goals to de-
lay until a particular Herbrand variable is bound or is unified with another
variable. In HAL a programmer can declare this by including deriving delay
in the declaration for a constructor type. As when deriving from solver/1 or
prolog/1, the compiler will automatically generate the appropriate methods and
instance declaration for that type. All such types use the common delay condi-
tions bound (X), touched(X) and the common delay id type system delay_id
and its system defined instance of delay_id. Note that system delay_id can
also be used in programmer defined solvers.

As an example of the use of delay in constructing constraint solvers, the
following program containst the code for (part of) a simple Boolean constraint
solver.*

% To simplify analysis, each goal; must be semidet and may not change the instanti-
ation of variables. As a result, delayed code cannot invalidate the mode and deter-
minism checking when woken up.

* Note the touched delayed goals are included only for illustration, they are not used
in the experiments.

:~ module bool_delay.

:- instance bool_solver(boolv).

:— export_abstract typedef boolv -> (f ; t) deriving [prolog,delay].
:— export func true --> boolv.

true --> t.

:— export pred and(boolv,boolv,boolv).

- mode and(o00,00,00) is semidet.

and(X,Y,Z) :-

(bound(X) ==>kill, X =f >Z =f ; Y = Z)
| bound(Y) ==> kill, (Y=f ->Z =f ; X = Z)
| bound(Z) ==> kill, (Z =1t -> X =t, Y =1t ; notboth(X,Y))).

;- export func false --> boolv.
false —-> f.
:— pred notboth(boolv,boolv).
:— mode notboth(oo,00) is semidet.
notboth(X,Y) :-
(bound(X) ==> kill, (X =t -> Y = f ; true)
| bound(Y) ==> kill, (Y =t -> X = f ; true)
| touched(X) ==> (X === Y -> kill, X = f ; true)
| touched(Y) ==> (X === Y -> kill, X = f ; true)).

The constructor type boolv is used to represent Booleans. Notice how the
class functions true and false are simply defined to return the appropriate
value, while the and predicate delays until one argument has a fixed value, and
then constrains the other arguments appropriately. In the case of notboth we
also test if two variables are identical. Hence, boolv must be declared as an
instance of both the prolog type class and the delay type class (and, hence,
implicitly as an instance of the solver type class.)

5 Using External Solvers from HAL

One of the main design requirements on the HAL language is that it should
readily support integration into foreign language applications and, in particular,
allow constraint solvers written in other languages to be called with relatively
little overhead. An example of such a solver is CPLEX [10], a simplex based solver
supporting linear arithmetic constraints.® This section details our experience
integrating CPLEX into HAL.

The HAL interface for CPLEX is built on top of three Mercury predicates:
the function initialise_cplex which returns a CPLEX solver instance C'P,
the predicate add_column(C' P,n) which adds n columns to the tableau, and
the predicate add_equality(CP, [(ci,v1),...,(cph,v,)], b) which adds the
equation ¢; - vy + --- + ¢, - v, = b to the tableau. These predicates wrap the C
interface functions of CPLEX. This is easy to do since C code can be directly
written as part of a Mercury predicate body. These predicates also handle trailing
and restoration of choice points. This is done by using the higher-order predicate

® CPLEX also provides routines for mixed integer programming and barrier methods
but we have not yet integrated these.

trail/1 which places its argument (a predicate closure), on the function trail
to be called in the event of backtracking to trail/1.
A naive way to write the interface in HAL is as follows.

:— module cplex.
:- instance linfloat_solver(cfloat).
:— import int.
:— export_abstract typedef cfloat -> col(int).
:— reinst_old cfloat = ground.
:- glob_var CPLEX has_type cplex_instance init_value initialise_cplex.
:- glob_var VarNum has_type int init_value O.
:— export_only pred init(cfloat).
- mode init(no) is det.
init(V) :- V = col($VarNum), $VarNum := $VarNum + 1, add_column($CPLEX,1).
:— export_only pred cfloat = cfloat.
- mode oo = oo is semidet.
Vi = V2 :- add_equality($CPLEX, [(1.0,V1),(-1.0,V2)], 0.0).
:— export func cfloat + cfloat --> cfloat.
Vi + V2 --> V3 :-
init (V3),
trust_det add_equality($CPLEX, [(1.0,V1),(1.0,V2),(-1.0,V3)], 0.0).
:— export func float x cfloat --> cfloat.
Cx V1l -->V2 :-

init (V2),

trustdet add_equality($CPLEX, [(C,V1),(-1.0,V2)], 0.0).
:— coerce coerce_float(float) --> cfloat.
:— export func coerce_float(float) --> cfloat.
coerce_float(C) --> V :-

init(V),

trust_det add_equality($CPLEX, [(1.0,V)], C).

The solver type cfloat is a wrapped integer giving the column number of the
variable in the CPLEX tableau. It is exported abstractly to provide an abstract
data type, and declared to be an instance of the linear arithmetic constraint
solver class linfloat_solver. The reinst_old declaration states that the in-
stantiation old for cfloats must be interpreted as ground inside this module
reflecting their internal implementation. We use two global variables: CPLEX for
storing the CPLEX instance, and VarNum for storing the number of variables
(columns) in the solver.

The predicate init/1 simply increments the counter VarNum and adds a col-
umn to the CPLEX tableau. The =/2 predicate adds an equality to the CPLEX
tableau. Both are designated as export_only, which makes them visible out-
side the module, but not inside. This avoids confusion with the internal view
of cfloats as wrapped integers rather than the external view as float variables.
The function +/2 initialises a new variable to be the result of the addition and
adds an equality constraint to compute the result. The trust_det annotation
allows the compiler to pass the determinism check (the solver author knows that
this call to add_equality will not fail). The linear multiplication function x/2
is defined similarly to +/2.

Since cfloats are constrained floats, it is convenient to be able to use floating
point constants in place of cfloats. HAL allows the solver programmer to specify
the automatic coercion of a base type to a solver type. In our example, the coerce
directive declares that coerce_float is a coercion function and the next three
lines give its type, mode and definition.

Unfortunately, this naive interface has a high overhead. One issue is that
many arithmetic constraints are simple assignments or tests which do not require
the power of a linear constraint solver. Thus, we can improve the interface by only
passing “real” constraints to the solver and “solving” simple assignments and
tests in the interface functions themselves. This can be done easily by redefining
the cfloat type to wrap either a true variable or a constant value and redefining
our interface functions to handle the different cases appropriately.

Another issue is that the interface splits complex linear equations into a
large number of intermediate constraints and variables. A better approach is
to have + and x build up a data structure representing the linear constraint.
More precisely, we can redefine cfloat to be this data structure and for +/2,
x/2, init/1 and coerce_float/1 to build the data structure. As a by product,
this data structure can also be used to track constants and perform tests and
assignments in the interface. The modified code is:

:— export_abstract typedef cfloat -> cfloat(float,list(cterm)).
- typedef cterm -> (float,int).
init(V) :- V = cfloat(0.0,[(1.0,$VarNum)]),

$VarNum := $VarNum + 1, add_column($CPLEX,1).
cfloat(Cl, Vsl) = cfloat(C2, Vs2) :-

negate_coeffs(Vs2, NewVs2),

append (Vs1, NewVs2, Terms),

add_equality ($CPLEX, Terms, C2-C1).
cfloat(Cl, Vsl) + cfloat(C2, Vs2) -->

cfloat(C1+C2,Vs) :- append(Vsl, Vs2, Vs).
C x cfloat(F, Vs) --> cfloat(C*F,NewVs) :- multiply_coeffs(C, Vs, NewVs).
coerce_float(C) --> cfloat(C, [1).

Also, in external solvers such as CPLEX that are not specialized for incre-
mental satisfiability checking, the usual CLP approach of checking satisfiability
after each new constraint is added, may be expensive. We can therefore im-
prove performance by “batching” constraints and requiring the programmer to
explicitly call the solver to check for satisfiability.

6 Using Constraint Handling Rules (CHRs)

Constraint Handling Rules (CHRs) have proven to be a very flexible formalism

for writing incremental constraint solvers and other reactive systems. In effect,

the rules define transitions from one constraint set to an equivalent constraint

set. Rules are repeatedly applied until no new rule can be applied. Once applied,

a rule cannot be undone. For more details the interested reader is referred to [6].
The simplest kind of rule is a propagation rule of the form

lhs ==> guard | rhs
where [hs is a conjunction of CHR constraints, guard is a conjunction of con-
straints of the underlying language (in practice this is any goal not involving
CHR constraints) and rhs is a conjunction of CHR constraints and constraints
of the underlying language. The rule states that if there is a set S appearing
in the global CHR constraint store G that matches [hs such that goal guard
is entailed by the current constraints, then we should add the rhs to the store.
Simplification rules have a similar form (replacing the ==> with a <=>) and be-
havior except that the matching set S is deleted from G. A syntactic extension
allows only part of the [hs to be eliminated by a simplification rule:
Ihsy \ lhsy <=> guard | rhs

indicates that only the set matching [hs, is eliminated.

Efficient implementations of CHRs are provided for SICStus Prolog, Eclipse
Prolog (see [5]) and Java [11]. Recently, they have also been integrated into
HAL [8]. As in most implementations, HAL CHRs sit on top of the “host”
language. More exactly, they may contain HAL code and are essentially compiled
into HAL in a pre-processing stage of the HAL compiler. As a consequence, CHR
constraints defined in HAL require the programmer to provide type, mode and
determinism declarations.

The following program implements part of a Boolean solver implemented in
HAL using CHRs.®

:— module bool_chr. :— export constraint true(boolv).

:- instance bool_solver(boolv). :- mode true(oo) is semidet.

:— export_abstract :— export constraint false(boolv).
typedef boolv -> wrap(int). :- mode false(oo) is semidet.

:- reinst_old boolv = ground. true(X), false(X) <=> fail.
:- export constraint

:— glob_var VNum and (boolv,boolv,boolv).
has_type int init_value O. . mode and(00,00,00) is semidet.
true(X) \ and(X,Y,Z) <=> Y = Z.
:— export_only true(Y) \ and(X,Y,Z) <=> X = Z.
pred init(boolv). false(X) \ and(X,Y,Z) <=> false(Z).
:— mode init(no) is det. false(Y) \ and(X,Y,Z) <=> false(Z).
init(V) :- V = wrap($VNum), false(Z) \ and(X,Y,Z) <=> notboth(X,Y).

$VNum := $VNum + 1. true(Z) \ and(X,Y,Z) <=> true(X), true(Y).

In this case boolvs are simply variable indices” and Boolean constraints and
values are implemented using CHR constraints. Initialization simply builds a
new term and increments the Boolean variable counter VNum which is a global
variable. The constraint declaration is like a pred declaration except it in-
dicates that it is a CHR predicate. The mode and determinism for each CHR
constraint are defined as usual. The remaining parts are CHRs. The first rule

6 Somewhat simplified for ease of exposition.
7" HAL does not yet support CHRs on Herbrand types

states that if a variable is given both truth values, true and false, we should fail.
The next rule (for and/3) states that if the first argument is true we can replace
the constraint by an equality of the remaining arguments.

In HAL, CHR constraints must have a mode which does not change the
instantiation of their arguments (like oo or in) to preserve mode safety, since the
compiler is unlikely to statically determine when rules fire. Predicates appearing
in the guard must also be det or semidet and not alter the instantiation of
variables appearing in the left hand side of the CHR (this means they are implied
by the store). This is a weak restriction since, typically, guards are simple tests.

7 Evaluation

Our first experiment has three aims. First, it illustrates the use of type classes
for “plug and play” with solvers. Second, it determines the overhead of using
type classes when implementing solvers. Third, it evaluates the efficiency of the
generic solver writing constructs supported by HAL: dynamic scheduling and
CHRs. For this experiment we created three implementations of a propagation-
based Boolean constraint solver: using dynamic scheduling (dyn); using CHRs
(chr); and using conversion to integer constraints (int).® We give two results for
each HAL solver: solv; which uses type classes for separate compilation, where
each query module was compiled separately from the solver, and joined at link
time; and solv; where the query module imported the solver, and was compiled
with this knowledge, so removing the overhead of type classes. It is important
to note that type classes allowed us to use identical code for the benchmarks:
only at linking time did we need to choose which solver to use.

To evaluate the efficiency of HAL,? we also built comparable solvers in SIC-
Stus Prolog: using the generic when delay mechanism (SICS,,) closest to our
generic delay mechanism, using the CHRs of SICStus (SICS.); and using the
clfd integer propagation solver (SICS.,). Finally, for interest, we provide two
more SICStus solvers: (SICS,) a dynamic scheduling solver using the highly
restricted but efficient block mechanism of SICStus, and (SICS,) where the
ground variable numbers in the CHR solver are replaced by Prolog variables,
allowing the use of attribute variable indices.

The comparison uses five simple Boolean benchmarks (most from [2]): the
first pigeonn-m places n pigeons in m pigeon holes (the 24-24 query succeeds,
while 8-7 fails); schurn Schurs’s lemma for n (see [2]) (the 13 query is the largest
n that succeeds); queensn the Boolean version of this classic problem; mycien-m
which colors a 5-colorable graph (taken from [16]) with n nodes and m edges
with 4 colours; and fulladder which searches for a single faulty gate in a n bit
adder (see e.g. [14] for the case of 1 bit).

8 More exactly, we use the integer propagation solver described in [7] which is imple-
mented in C and interfaced to HAL using the methodology described in Section 5.
It is much easier to build highly flexible but inefficient mechanisms for defining

solvers.

Benchmark || Var| Con|Search|| Dynamic Scheduling

dyni|dyni|SICS,,|SICS,
mycie23_71 || 184| 583| 19717({1855/1816| 34769| 1920
fulladder 135 413| 1046|| 472| 471| 5181 147
pigeon24_24((1152|13896| 576|| 805| 822| 2258 56
pigeon8_7 112| 444| 24296|| 931| 901| 16870| 843
queensl8 972(13440| 42168(|8904(8818| 125250| 7316
schurl3 178| 456 a7 22| 18 118 4
schurl4 203| 525| 450|| 98| 112 1308 63

Table 1. Comparison of Boolean solvers for dynamic scheduling.

Benchmark CHRs Integer

chry] chri| SICS.|SICS.,| int:] int;[SICS.
mycie23_71 || 25073| 25070| 200613| 76567|/1279|1251| 5339
fulladder 4240 4270| 24770| 13840| 178| 175 313
pigeon24 24| 71455 70785| 107366 71048|| 81| 72 957
pigeon8_7 11313| 11176| 61126] 36251| 765 726| 3166
queensl8 504750({511620(1350636|263433|(4522|4438| 12363
schurl3 53 63 450 201 9 7 51
schurl4 823 830 5966 2319| 55| 52 278

Table 2. Comparison of Boolean solvers using an existing integer solver and CHRs.

Table 1 gives an indication of how much work the solvers are performing for
each benchmark. Var is the number of variables initialised by the solver, Con is
the number of Boolean constraints, and Search is the number of labeling steps
performed (using the default labeling strategy to find a first solution). Note
that each solver implements exactly the same propagation strength on Boolean
constraints and, thus, for each benchmark each different solver performs exactly
the same search. All timings are the average over 10 runs on a dual Pentium
I1-400MHz with 384M of RAM running under Linux RedHat 5.2 with kernel
version 2.2, and are given in milliseconds. SICStus Prolog 3.8.4 is run under
compact code (no fastcode for Linux).

From Table 1 it is clear that the generic delay mechanism implemented in
HAL is reasonably efficient. In comparison with the propagation happening in
C in the integer solver, the dynamic scheduled version is only 4 times slower. It
also compares well with the generic dynamic scheduling of SICStus. However,
the block based dynamic scheduling of SICStus illustrates how delay that is
tightly tied to the execution mechanism can be very efficient.

Table 2 shows that the CHR solver mechanism for HAL (at least for this
example) is significantly faster than the SICStus equivalent, so much so that
in this case even the use of attributed variable indexing does not regain the

Bench naive constants datastructures ECL
Con| inc Con| inc| batch Con| inc|batch|+0pt Con|batch

fib 2557|1329000(| 465| 49010{ 5950(| 233|25280| 2910{2690|| 232| 7650
laplace || 347| 9070 298| 5140 1550(| 20| 950{ 210|{ 210|| 90| 1070
matmul nonlinear || 684(142830|15020|| 216(27390| 2950|2270|| 432{10050
mortgage|| nonlinear || 482 89940|18200 2| 810 750|1520}| 240| 6390

Table 3. Executing CPLEX using the various HAL interfaces.

difference except in the biggest examples.'® We are currently working on adding
indices to HAL CHRs.

Examination of both tables shows that the type class mechanism does not
add substantial overhead to the use of constraint solvers: The overhead of type
classes varies up to 3.5% (ignoring the 28% on very small times), and the average
overhead is just 2%.

Note that this experiment is not meant to be an indication of the merits of
the different approaches since, for building different solvers, each approach has
its place.

Our second experiment compares the speed of the HAL interfaces defined in
Section 5: the naive interface, the interface constant that keeps track of when
cfloats are constants and solves assignments and test in the interface itself, and
the interface datastructures which builds data structures to handle functions
calls, and only sends constraints at predicate calls. For the last two, we run the
solver incrementally (solving after every constraint addition) and in batch mode
(explicitly calling a solve predicate). For the last interface we also provide a
version (+opt) which implements a simple type of partial evaluation by making
use of Mercury to aggresively inline predicates and functions even across module
boundaries. Finally, we compare against the ECLiPSe [9] interface (ECL) to the
CPLEX solver, which also batches constraints.

The benchmarks are standard small linear arithmetic examples (see e.g. [3]).
The table gives the number of constraints sent to CPLEX by each solver (Con),
and execution times in milliseconds for 100 executions of the program. The
last two benchmarks involve nonlinear constraints (not handled by CPLEX) if
constants are not kept track of.

It is clear from Table 3 that the naive interface is impractical. Tracking con-
stants and performing assignments and tests in the interface itself significantly
improves speed. The move to using data structures to build linear expressions
is clearly important in practice. Using this technique, the number of constraints
passed to CPLEX for mortgage is reduced to just 2. Finally, batching is clearly
worthwhile in these examples.

This experiment, shows that the external solver interface for CPLEX is con-
siderably faster than that provided by ECLiPSe and we believe that there is still
considerable scope for improvement. Inlining of predicates and functions across

10 Note that using bindings to represent true and false would result in a more efficient
SICStus CHR, Boolean solver, but the equivalent is not possible in HAL (at present).

module boundaries provides substantial improvement, but we believe that we
can do even better by partially evaluating away many of the calls to solver in-
terface and building the arguments to the calls to CPLEX at compile time if the
constraint is known. Similarly, we would like to automatically perform “batch-
ing” by making HAL introduce satisfiability checks just before a choice point
is created. An important lesson from the second experiment is that it is vital
for a CLP language to allow easy experimentation with the interface to external
solvers, since the choice of interface can make a crucial difference to performance.
Our experience with HAL has been very positive in this regard.

References

1.

13.

14.

15.

16.
17.

F. Bueno, M. Garcia de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and
P.J. Stuckey. A model for inter-module analysis and optimizing compilation. In
Procs of LOPSTR2000, volume 2042 of LNCS, pages 86-102, 2001.

P. Codognet and D. Diaz. Boolean constraint solving using clp(FD). In Procs. of
ILPS’1993, pages 525-539. MIT Press, 1993.

B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, and P.J. Stuckey. An
overview of HAL. In Procs. of PPCP’99, LNCS, pages 174-188, 1999.

A.J. Ferndndez and B.C. Ruiz Jiménez. Una semdntica operacional para CProlog.
In Proceedings of II Jornadas de Informdtica, pages 21-30, 1996.

T. Frithwirth. CHR home page. www.informatik.uni-muenchen.de/~fruehwir/chr/.
T. Friithwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37:95-138, 1998.

W. Harvey and P.J. Stuckey. Constraint representation for propagation. In
Procs. of PPCP’98, LNCS, pages 235—249. Springer-Verlag, 1998.

C. Holzbaur, P.J. Stuckey, M. Garcia de la Banda, and D. Jeffery. Optimizing
compilation of constraint handling rules. In Procs. of ICLP17, LNCS, 2001.

. IC PARC. ECLiPSe prolog home page. http://www.icparc.ic.ac.uk/eclipse/.
10.
11.
12.

ILOG. CPLEX product page. http://www.ilog.com/products/cplex/.

Jack: Java constraint kit. http://www.fast.de/ mandel/jack/.

D. Jeffery, F. Henderson, and Z. Somogyi. Type classes in Mercury. Technical
Report 98/13, University of Melbourne, Australia, 1998.

S. Kaes. Parametric overloading in polymorphic programming languages. In
ESOP’88 Programming Languages and Systems, volume 300 of LNCS, pages 131—
141, 1988.

K. Marriott and P.J. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1998.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative logic programming language. JLP, 29:17-64, 1996.
M. Trick. mat.gsia.cmu.edu/COLOR/color.html.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In Proc.
16th ACM POPL, pages 60-76, 1989.

