THESIS FOR THE DEGREE OF
MASTER OF COMPUTER SCIENCE BY RESEARCH

The Analysis Framework of HAL

Nicholas Nethercote

Department of Computer Science and Software Engineering
University of Melbourne, Melbourne, Australia.
September 2001 (revised April 2002).

Abstract

This thesis describes the implementation of an abstract interpretation-based generic analysis
framework for the strongly typed, weakly moded, third generation constraint logic program-
ming language HAL. The framework is domain independent, supports both top-down and
bottom-up analyses, and uses a sophisticated algorithm and specialised data structures to
compute analysis fixpoints efficiently.

We start by defining top-down and bottom-up semantics for the framework, and give a
detailed description of its implementation, including discussion of non-obvious but important
points for ensuring correctness and efficiency.

We then present top-down analyses for groundness, sharing and freeness that are im-
plemented within the generic framework. The information they infer is used for optimising
HAL programs that use Herbrand constraint solving by replacing the general unification
operation with more specialised primitives. Importantly, we use mode information provided
by the programmer to improve the efficiency and accuracy of such analyses. We then eval-
uate the cost of each analysis and the potential and actual benefits of these optimisations,
concentrating particularly on the relative effect of each optimisation. The results show that
the specialised primitives are up to twice as fast as general unification, and the effects of
the optimisations for programs that use Herbrand constraint solving heavily are encourag-
ing. Importantly, we also use the experimental results to identify another optimisation that
will enable the use of even more highly specialised unifications — reduced to a handful of
instructions — that run five to eight times faster than general unification.

We then describe HAL’s determinism analysis, a bottom-up analysis implemented within
the framework which aims to infer the number of solutions a procedure may have, and
whether it may fail before producing its first solution. We evaluate the analysis cost, finding
that it accounts for only 2-6% of compilation time, while the more specialised execution
algorithms it allows speed up programs by an average of 70%. We also discuss the impact of
determinism declarations on programming style, and how they promote program correctness.

Finally, we tackle the difficult problem of combining practical and accurate inter-module
analysis with separate compilation. We describe in detail the compilation model used in
the HAL compiler that supports context-sensitive inter-module analysis and multi-variant
specialisation. The model allows an executable to be created after each module is compiled
only once, but for complete analysis information each module may need to be compiled more
than once. In the absence of procedure-level cyclic inter-module dependencies, this complete

analysis information is as accurate as that found by a global program analysis.

iii

Acknowledgments

I would like to thank my supervisors, Peter Stuckey and Maria Garcia de la Banda, for
all their help. They were always knowledgeable and friendly, helpful and interested, and
generous with their time. In particular, I thank them for choosing me to work on HAL as a
summer student when I didn’t even realise that I wanted to study programming languages.

I wish to thank other members of the HAL team: Kim Marriott, for supervising me
while Peter and Maria were away; and David Jeffery, for driving me out to Monash all those
times, and answering all my questions about Mercury. Thanks also to Inga Sitzmann for
proof-reading part of this thesis.

I also give heartfelt thanks and love to my family for the unquestioning support they
have given me this year and every other.

Finally, T would like to acknowledge the Commonwealth of Australia for the financial

support which made this work possible.

Contents

1 Introduction

2 A New CLP Language

2.1 Constraint Logic Programming
2.2 First Generation CLP Languages
2.3 Second Generation CLP Languages
2.4 HAL, a Third Generation CLP Language
2.4.1 An Example HAL Program: mortgage
2.4.2 Further Language Features
2.4.3 Current Implementation

3 Program Analysis

3.1 Analysis in HAL: An Overview,
3.1.1 Analyses for Correctness
3.1.2 Analyses for Optimisation,
3.1.3 Analyses Chosen for HAL

3.2 Program Representation o o
3.2.1 Canonical Form of Constraint Logic Programs
3.2.2 Super-homogeneous Form of HAL Programs.
3.2.3 Internal Representation of HAL Programs

3.3 Theoretical Foundations o oo
3.3.1 Abstract Interpretationo
3.3.2 Top-down Analysis
3.3.3 Two Variations of top2L
3.3.4 Bottom-up Analysis

4 Intra-module Analysis

4.1 Preliminaries o . e e e e e e e
4.2 Data Structures
4.2.1 The Priority Queue
4.2.2 The Answer Table
423 TheArcTable
4.3 Operations o .o e e e
4.4 The Generic Algorithm

vii

11

13
13
13
14
15
16
16
16
17
18
18
20
23
24

4.5 An Example.o e 39
4.6 Replacing Similar Arcso 41
4.7 Correctness o oo e e e 43
4.8 Differences Between Algorithms oo oo, 44
4.9 Efficiency Considerations o e 45
4.9.1 Priority Queue Strategy 45
4.9.2 Arc Table Structure o 46
4.9.3 Dead Variable Removal 47
4.9.4 Avoiding Unnecessary Adisj and Aif_thenelse Calls 48
4.9.5 Avoiding Unnecessary Aextend and Aoutrestrict Calls 48
4.9.6 Selective Annotationso 49
4.9.7 Efficiency of Bottom-up Analysis 49
4.10 Performance Evaluation 0oL 50
Herbrand Analysis 51
5.1 Common Uses and Approaches, 52
5. 1.1 Groundness 52
5.1.2 Sharing 52
5.1.3 Freenesso 52
5.2 Term Representation and Herbrand Unification 52
5.2.1 Mercury e 53
5.2.2 HAL e 54
5.2.3 Optimisation of Herbrand Unifications in HAL 56
5.3 Groundness Analysisin HAL 58
5.3.1 DBCFpes Representation and Operations 59
5.3.2 Integrating Mode Information L. 60
5.3.3 Definition of Def™" L 61
5.4 Sharing Analysis in HAL oo 63
54.1 Groundnessol e e e 63
5.4.2 Structure Sharing 63
5.4.3 Groundness + Structure Sharing = ASub, 65
5.4.4 Definition of ASub™L . . . 65
5.5 Freeness Analysisin HAL 67
5.5.1 Sharing 67
5.5.2 Freeness and Loneliness 67
5.5.3 Handling Unifications 68
5.5.4 Definition of Freeness™L 69
5.6 Experimental Analysis Evaluation 71
5.6.1 Cost of Analysis 71
5.6.2 Effect of Optimisations 72

5.7

Conclusion e e 78

6 Determinism Analysis 81

6.1 HAL’s Determinism System o 81
6.2 The Determinism Domain oL 82
6.3 Preprocessing 84
6.3.1 Switch Detection 84
6.3.2 Common Subexpression Elimination, 86

6.4 Determinism Analysisof Bodies oo . 87
6.4.1 Literals L 87
6.4.2 Conjunctions e 88
6.4.3 Disjunctions 89
6.4.4 Switches L. 89
6.4.5 If-then-elses o 89

6.5 Determinism Analysis of Modules 91
6.6 Errors and Warnings o 93
6.7 Experimental Analysis Evaluation 93
6.7.1 Cost of Analysis 93
6.7.2 Effect of Optimisations 94
6.7.3 Limitations 96
6.7.4 Effect on Programming Style 96

6.8 Conclusion L 97
7 Inter-module Analysis 99
7.1 Difficulties of Inter-module Analysis 100
7.2 Previous Approacheso 100
7.3 The HAL Approach 102
7.3.1 Analysis Registryo 103
7.3.2 Inter-module Dependency Graph 104
7.3.3 Recording Information Between Compilations 106
7.3.4 Treatment of Special Modules, 106

7.4 Compiling a Single Module 107
7.4.1 Deciding Initial Contexts 107
7.4.2 Obtaining External Answers 108
7.4.3 Updating the Analysis Registry 108
7.4.4 Updating the Inter-module Dependencies 109
7.4.5 Generating Code 110
7.4.6 Creating An Executable 112
74.7 An Example 112
7.4.8 Use and Update of .reg and .imdg Files 115

7.5 Complications 115
7.5.1 Cyclic Dependencies e 116
7.5.2 Library and Solver Modules 116

7.6 Correctness and Accuracyo 118

7.7 Efficiency Considerations 119

7.8 Controlling Compilation 119

7.9 Experimental Evaluationo o 120
7.9.1 Cost of Compilation 121
7.9.2 Effect of Module Structure L. 122
7.9.3 Effect of Cyclic Dependencies, 122

7.10 Conclusion e e e 123

8 Conclusion 125

List of Figures

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

6.1
6.2

7.1
7.2
7.3
74
7.5
7.6

Generic analysis algorithm (I) Lo 34
Generic analysis algorithm (IT) 35
Generic analysis algorithm (IIT), 36
Information flow during analysis of 1e(X,Y) 40
Simple groundness analysis of le(X,Y) : {Y} 41
Mercury representation of [a, b, ¢l 53
HAL representation of [X, Y, Z1 54
Bound variable dereferencingo oo 56
Two-variable Def and Pos lattices 59
Def™ abstract OPErations e e e e 62
Two-variable SS lattice Lo 64
ASub™L abstract operationso 66
Two-variable (free set, lonely set) lattice 67
Freeness™ abstract operationso e 70
Determinism lattice o 83
Determinism analysis abstract operations, 92
Inter-module dependency graph I 105
Inter-module dependency graph IT 105
Inter-module dependency graph ITI 105
Dependencies between modules L, Mand N 115
A cyclic inter-module dependency grapho 116
A logical module structure for icompo 121

xi

List of Tables

5.1
5.2
9.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

Specialisations of unify_oo L oL
X =V for Freeness™F . .
X = f(Y) for Freeness™F . L
Cost of Freeness™" analysis (IMS) oo v v i e
1,000,000 lonely—lonely unifications (ms)
1,000,000 lonely—ground unifications (ms)
250,000 free—free unifications (ms) L.
250,000 ground-ground unifications (ms)
1,000,000 lonely—lonely notrail unifications (ms)
1,000,000 lonely—ground notrail unifications (ms)
Effect of Freeness™” analysis (InS) v v i

The determinism categorieso
Determinism of conjunctions, disjunctions, full cannot_fail switches

Conjunction max_soln combinations
Full switch max_soln combinations
Full switch can_fail combinations
Cost of determinism analysis (ms)

Effect of determinism optimisations (ms) L.

Multi-module analysis times (ms) L.

xiii

Preface

This thesis comprises eight chapters, including an introduction and a conclusion. Following
the introduction, Chapter 2 provides sufficient background on constraint logic programming
and HAL to understand the rest of the thesis. Chapters 3 and 4 describe the theory and
implementation of the analysis framework of HAL. Chapters 5 and 6 describe and evaluate
various analysis domains implemented within this framework. Chapter 7 describes a com-
pilation model that supports accurate inter-module analysis and optimisation. Chapter 8
concludes.

This thesis is derived entirely from my own research. None of the material in this thesis
has been previously published.

I certify that:

(i) this thesis comprises only my original work;
(ii) due acknowledgment has been made in the text to all other material used;

(iii) the thesis is approximately 30,000 words in length, exclusive of tables, maps, bibli-

ographies, appendices and footnotes.

XV

Chapter 1

Introduction

Compilers for modern declarative programming languages typically perform multiple phases

of static analysis. These analyses can be broadly categorised as having one of two purposes.

e Analyses for correctness: these are used to check programmer declarations and as-
sertions, and to infer unspecified program properties. Perhaps the best known example

is type analysis.

The primary purpose of such analyses is to improve program correctness. In some
cases, the information about program properties may also be used to improve program

efficiency, for example by allowing the use of a more efficient execution mechanism.

e Analyses for optimisation: these are used to predict safe and computable approx-
imations of values and behaviours arising dynamically during program execution, in

order to avoid redundant and superfluous computations.

The primary purpose of such analyses is to improve program efficiency.

The benefits of improving program correctness and efficiency are clear. High-level declarative
languages such as constraint programming languages are particularly amenable to analysis,
due to their relatively clean semantics. Being high-level, they also have a lot to gain from
performance optimisations.

One common approach for analysing constraint logic programs is to provide a generic
analysis framework onto which multiple analyses can be “hooked”. This makes it simple
to add new analyses. It also means that any improvement to the framework will benefit
multiple analyses.

The goal of this thesis is to comprehensively describe such an analysis framework for the
constraint logic programming language HAL. In doing so, we aim to provide the following.

e A clear justification of the form of the framework.
e A sound theoretical basis for the framework.

e A comprehensive description of the implementation of the framework.

2 CHAPTER 1. INTRODUCTION

e Detailed descriptions of analyses implemented within the framework, and any enabled

optimisations.

e Empirical evaluation of the costs and benefits of these analyses.

To satisfy this goal, we must consider potentially awkward details that are often overlooked

in descriptions of program analyses, but are important in a real implementation.

e Analysis of full programs, without any restrictions on language features used.

The use of higher-order programming.

Practical and accurate inter-module analysis.

e Appropriate treatment of library modules.

The use of programmer declarations to improve the accuracy and efficiency of analysis.
e Efficiency considerations, to minimise the cost of analysis.

Finally, this thesis is intended to focus on techniques that have been implemented and tested;
anything not implemented should be clearly identified, and its potential for future inclusion
within the compiler should be clearly stated.

With this goal clearly in mind, let us describe the organisation of this thesis. Chapter 2
provides a brief introduction to and history of constraint logic programming, and introduces
HAL. Chapter 3 outlines the reasons for choosing HAL’s particular analysis framework, and
also provides its theoretical basis. Chapter 4 describes the actual implementation of the anal-
ysis framework, including detailed pseudocode of the main algorithm. Chapter 5 describes
the implementation within the framework of groundness, sharing and freeness analyses, three
traditional top-down (or goal-dependent) analyses for optimisation; Chapter 6 describes the
implementation within the framework of a determinism analysis, a non-traditional bottom-
up (or goal independent)! analysis for correctness. Both chapters contain evaluations of the
cost of the analyses, and their benefits. Chapter 7 describes and evaluates the compilation
model used in the HAL compiler that allows accurate, context-sensitive analysis information
to be gathered across module boundaries. Chapter 8 concludes by considering how well our
goals have been achieved, highlighting our contributions and identifying directions for future

research.

IThe terms top-down and goal-dependent will be used interchangeably in this thesis, as will the terms
bottom-up and goal-independent.

Chapter 2

A New CLP Language

Constraint logic programming (CLP) languages are designed to solve a broad range of dif-
ficult problems that involve constraints, such as combinatorial optimisation and constraint
satisfaction problems. Many different techniques can be used to solve these problems, but
there is no single best technique — different techniques are suitable for different problems.

This chapter provides an introduction to constraint logic programming, briefly describes
its history to show how the paradigm has evolved to provide programmers with greater con-
trol over the techniques used to solve their problems, and culminates with an introduction
to HAL, a third generation CLP language designed specifically to facilitate easy experimen-
tation with different constraint solving techniques. This description of HAL will serve as a

sufficient background for the rest of this thesis.

2.1 Constraint Logic Programming

Constraint logic programming (CLP) is a relatively recent paradigm that combines the
constraint solving facilities of constraint programming with the powerful and flexible search
capabilities of logic programming. Here we introduce the basics of CLP.

Let us first consider the building blocks of constraint logic programs. A wvariable is a
place-holder for a value, and is represented by a string of alphanumeric characters beginning
with an upper case letter. A constructor is a string of characters beginning with a lower-
case letter. A constant is a constructor or a value of some primitive type from a constraint
domain, such as an integer. A term is either a variable, a constant, or a compound term —
a constructor applied to an ordered list of one or more terms, written f(¢y,...,t,), where
t1,...,t, are terms. Constructors are often called functors. The arity of a term is its number
of arguments. The functor f and arity n of a term is often written f/n.

All variables are initially unconstrained, but may become progressively more constrained.
Unconstrained variables of term types are free, and may become bound to a term. A variable
whose value is constrained to have a unique fixed value is ground.

Given a constraint domain D, a primitive constraint is a constraint relation symbol from
D used with the appropriate number of arguments. For example, X < 0 is a primitive

constraint from the domain R (real numbers). A wuser-defined constraint has the form

3

4 CHAPTER 2. A NEW CLP LANGUAGE

p(t1,...,t,) where pis an n-ary predicate and ¢, ..., %, are expressions from the constraint
domain. User-defined constraints are also known as atoms. A literal is either a primitive
constraint or a user-defined constraint. A goal is a sequence of literals, Ly,..., L,. A rule
has the form H < B where the head H is a user-defined constraint and B is a goal. A
predicate consists of multiple rules each having a head with the same functor and arity. A
program is a collection of predicates.

A renaming is a bijective mapping from variables to variables. The result of applying
a renaming o to a syntactic object s, written o(s), is that object s with each variable x
replaced by the variable o(x). The inverse of a renaming o is written o 1.

Programs are executed in response to a starting goal, called a query. Execution is based
around the process of derivation. At each step in the derivation a literal is processed (usually
the left-most one). If the literal is a user-defined constraint, it is replaced by the body of
one of the predicate’s rules (typically the first applicable one), with variables appropriately
renamed. If a literal is a primitive constraint it is added to the constraint store. If we can
process all the literals in a predicate, that predicate succeeds. If the constraint store becomes
unsatisfiable at some point, the particular derivation has failed, but we may backtrack to
previous rule choices and explore alternative execution paths. If no other paths succeed,
the predicate fails. We may also backtrack after succeeding to search for further solutions.
Thus the execution of a program is simply the exploration of a derivation tree, in which

each node represents a failed or a successful derivation.

2.2 First Generation CLP Languages

First generation constraint languages were characterised by the constraint logic programming

scheme introduced by Jaffar and Lassez in [30], described in [42]:

“This constraint logic programming scheme defines a family of languages. Given
a particular constraint domain, constraint solver and constraint simplifier; the
scheme defines a language for writing programs and a mechanism for evaluating

goals and programs written in this language.”

For example, the language CLP(Tree) solves problems over the Tree (or Herbrand) do-
main.! Equality and disequality are the only primitive constraints provided for trees. Tree
constraints are present in almost all CLP languages, as they allow complex data structures
to be used.

More typical first generation CLP languages combined the Tree domain with a second
constraint domain. The language CLP(R) [31, 32, 20] combines the Tree and R (real)
domains; elements of the domain are trees that may have real numbers as leaves. Real
(floating-point) numbers can be operated on using arithmetic and trigonometric functions,
and can be constrained by equality, inequality, and (in some implementations) disequality
relations. Similarly, the language CLP(FD) ([14] describes one implementation) combines

tree and finite domain constraints. Finite domain variables may be constrained by equality,

IThis is the pure component of the logic programming language Prolog.

2.2. FIRST GENERATION CLP LANGUAGES)

inequality and disequality constraints; implementations typically also provide more complex
built-in constraints useful for particular problems such as job-shop scheduling.

A classic example of constraint logic programming is provided by the CLP(R) program
mortgage that models a bank loan (this version from [42]). It has five parameters: the
principal, or amount still owed (P), the number of time periods in the mortgage (T), the

interest rate (I), the repayment per time period (R), and the final balance owing (B).

mortgage(P, T, I, R, B) :-
T=20.0, B=P.
mortgage(P, T, I, R, B) :-
T > 1.0,
mortgage(P + PxI - R, T - 1.0, I, R, B).

The first rule states that when the loan completes (T = 0.0), the balance remaining is equal
to the amount still owed. The second rule uses recursion to define the mortgage in terms of
itself, one time period hence; the amount owed will increase due to interest on the principal
and decrease due to repayment.

Two advantages of CLP are demonstrated by mortgage: it is extremely concise, and
it can be run in multiple modes of usage — many different questions can be answered by
varying the instantiation of the five parameters. For example, this straightforward query of
the CLP(R) system,

?7- mortgage(10000.0, 10.0, 0.1, 1000.0, B).

asks “for a loan of $10,000, with an interest rate of 10% and repayments of $1,000 per time

period, what will the balance be after ten periods?” The system’s answer is:
B = 10000

Another query,

?7- mortgage(P, 10.0, 0.1, 1000.0, 0.0).

asks “for a loan of ten periods, with an interest rate of 10% and repayments of $1,000 per

period, how much can be borrowed so that the final balance will be $0?” The answer is:
P = 6144.57

A more complex query,

?- mortgage(P, 10.0, 0.1, R, B),

asks “for a loan of ten periods, with an interest rate of 10%, what is the relationship between

the principle, the repayment, and the final balance?” The answer is:
P = 0.385543%B + 6.14457*R

By contrast, a typical imperative version of mortgage would be considerably longer, and
would only be able to answer one type of query, such as the first one above which calculates
B.

6 CHAPTER 2. A NEW CLP LANGUAGE

2.3 Second Generation CLP Languages

First generation CLP languages lacked flexibility — their solvers were non-extensible “black
boxes” over which programmers had no control. Because different problems are suited to
different constraint solving techniques, this was a significant drawback.

This limitation was gradually lessened as CLP languages evolved to provide support for
problem-specific constraint solving. At first they provided “glass box” solvers which the
programmer could extend to include problem-specific constraints (e.g. [14]). More recent
versions of CLP languages such as ECLiPSe [64], SICStus Prolog [58] and clp(Q,R) [26]
also support the addition of new constraint solvers by providing features such as dynamic
scheduling [41], constraint handling rules [16] and attributed variables [25]. In a similar
vein, toolkits such as ILOG SOLVER [53], designed for solving finite domain problems in
C++, allow the programmer to define new primitive constraints by extending the solver
and search mechanism.

However, few if any compilers for these languages perform analysis of programmer ex-
tensions, so they cannot be optimised, which may penalise their use.

2.4 HAL, a Third Generation CLP Language

HAL [12] is a strongly typed, weakly moded CLP language designed to allow easy experi-
mentation with different constraint solvers, to support extension of solvers and construction
of hybrid solvers, and to call solvers written in other languages such as C with little overhead.

The basic HAL syntax follows that of standard CLP languages, with variables, rules and
predicates defined as usual. Beyond that, HAL also supports functions, and has a variety
of declarations allowing the programmer to provide extra information about programs. For
example, predicates and functions have semi-optional type, mode and determinism decla-
rations.? Information from these declarations assists program correctness and allows the
generation of fast target code and efficient integration with foreign languages. The declara-
tions are very similar to those of the logic programming language Mercury [56], which HAL

uses as a target language.

2.4.1 An Example HAL Program: mortgage

HAL is best introduced by an example. Consider the HAL version of mortgage, from [12].

:- module mortgage. (L1)
:- import simplex. (L2)
:- export pred mortgage(cfloat, cfloat, cfloat, cfloat, cfloat). (L3)
- mode mortgage(in, in, in, in, out) is nondet. (L4)
- mode mortgage(oo, oo, 0o, 00, 00) is nondet. (L5)
mortgage(P, T, I, R, B) :- (L6)

T =0.0, B =P. (L7)

2By “semi-optional” we mean they are compulsory for predicates exported from a module. Section 6.1
explains the reasoning behind this.

2.4. HAL, A THIRD GENERATION CLP LANGUAGE 7

mortgage(P, T, I, R, B) :- (L8)
T >= 1.0, (L9)
mortgage(P + PxI - R, T - 1.0, I, R, B). (L10)

Module name and imports: A module is defined within a file, exports items by anno-
tating them with an export declaration (the export_abstract declaration exports items
abstractly), and imports all the exported items from another module using the import dec-
laration (selective import is also possible). HAL source file names must end in the suffix
“.hal”.

Line (L1) declares the module name. Line (L2) imports a library module simplex, which
provides a simplex-based linear arithmetic constraint solver for constrained floating point

numbers, called cfloats.

Types: Every term in a program has a type, which determines its internal representation.
The core language provides integer, float, character and string types, plus polymorphic
constructor types (such as lists) based on these types. It only supports basic operations
such as assignment, tests for equality, and construction and deconstruction of ground terms.
If more sophisticated constraint solving is required for a type, a constraint solver for that
type must be used.

Types are created using polymorphic regular tree type statements. Type renamings are

also allowed. For example:

:- typedef 1ist(T) -> ([1 ; [T | 1ist(T)]).
:— typedef tree(T) -> (leaf ; branch(tree(T), T, tree(T))).
:- typedef int_list = list(int).

The first definition defines the polymorphic 1ist/1 constructor type, where the constant
[1 represents the empty list, [Head | Tail] is the usual syntactic sugar for the non-empty
list . (Head, Tail), and T is a type variable. The definition of the tree/1 type shows the
standard term syntax for user-defined types. The third definition is a monomorphic variant
of 1ist/1 — a list of integers.

Overloading of predicates and functions is allowed, as long as identically named predi-
cates and functions are defined in different modules. This allows the programmer to overload
the standard arithmetic operations and relations (including equality), resulting in a natural
syntax for constraints across multiple solvers. The type-checking algorithm that allows this
overloading is described in [13].

Line (L3) of the example program exports the mortgage predicate, and also provides its
type declaration, which prescribes the type of its arguments — all five are cfloats, which
are represented differently to built-in floats, and support full constraint solving.

Type classes: Type classes [63] provide ad-hoc or constrained polymorphism, which allow
programmers to write code that can operate on any type that implements certain methods.
Such a type is called an instance of the type class. Type classes provide a natural way of

specifying a solver’s capabilities, allowing a well-defined interface for solvers. HAL’s type

8 CHAPTER 2. A NEW CLP LANGUAGE

class system is similar to Mercury’s [34], the major difference being that HAL has a built-in
class hierarchy characterising different solvers, ranging from the most basic class eq with
a single equality method =/2, through to complex solver classes such as float_solver,
which has methods for addition, subtraction, multiplication and comparison of constrained
floats. Instances of some built-in classes can be automatically generated for types by using
a “deriving” annotation. See [17] for details of the built-in hierarchy.

Type classes are not directly evident in mortgage, but the cfloat type imported from
the simplex module would be an instance of the built-in float_solver class. The presence

of this type class could be made explicit by generalising mortgage’s type declaration to this:
:- export pred mortgage(T, T, T, T, T) <= float_solver(T).

The “<= float_solver(T)” annotation is a type class constraint which states that mortgage
may be passed arguments of any type that is an instance of the class float_solver/1. This
demonstrates the ease of experimentation with different solvers in HAL — the solver used

by a predicate can be changed very easily.

Instantiations: At each point in the execution of a program, every term in scope has an
instantiation. The base instantiations are new, old and ground. A variable is new if it has
not been seen by a constraint solver, old if it has, and ground if it has a fixed value. For
types that have no solver, such as the built-in types, old is equivalent to ground.

More complex instantiations, lying between old and ground, can be defined. Polymor-

phic instantiation definitions are allowed, as are instantiation renamings. For example:

:— instdef 1list(I) > ([0 ; [T | 1ist(D)]).
:- instdef ground_list = list(ground).

These definitions define a fixed-length list whose elements all have the same instantiation,
and a ground list.

Modes: FEach argument of a predicate has a mode, i.e. a mapping Inst;, — Instyy: de-
scribing its input and (if the predicate succeeds) output instantiations.

The base modes are constructed from the base instantiations. We use two letter abbre-
viations (nn, no, ng, oo, og, gg) using the first letter of each instantiation (e.g. ng represents
new — ground). The frequently used modes in and out are renamings of gg and ng respec-
tively.

Mode definitions are created from existing instantiations. Polymorphic mode definitions

and mode renamings are allowed. For example:

:— modedef ng -> (new -> ground).
:- modedef same(I) -> (I -> I).
:- modedef in = ng.

These definitions define the base mode ng; a mode that leaves an argument’s instantiation

unchanged; and the renaming in.

2.4. HAL, A THIRD GENERATION CLP LANGUAGE 9

Lines (L4) and (L5) of mortgage are mode declarations, which define the modes of usage
with which a predicate may be used. We call each mode of usage a procedure; for efficiency,
separate code is generated for each procedure.

The first mode declaration uses the modes in and out; for this procedure to be used,
when called the first four arguments must be ground and the last argument must be new.
When the predicate returns all arguments must be ground. In the second mode all five
arguments are oo, which means they must be “constrained” (old) upon predicate entry and
exit. This more flexible procedure allows arbitrary uses of the predicate, like the CLP(R)
version, but will execute less efficiently than the first procedure which is specialised for one
particular kind of query.

It is worth noting that HAL’s mode system is prescriptive rather than descriptive — the

HAL compiler will reject a program if it cannot prove it satisfies its mode declarations.

Determinism declarations: FEach procedure has a determinism, which describes how
many solutions it may have. The six values used in HAL are the same as those used
in Mercury: det means exactly one solution, semidet means zero or one solution, multi
means one or more solutions, nondet means any number of solutions, failure means zero
solutions, and erroneous means a run-time abort, exception, or infinite loop.

A determinism declaration can accompany each mode declaration. Both procedures of
mortgage are nondet, meaning they may return any number of solutions.?

HAL’s determinism system is described in detail in Chapter 6.

Predicate body: Lines (L6)—(L10) define the two rules for mortgage. They are identical
to the rules in the CLP(R) version given in Section 2.2.

2.4.2 Further Language Features

HAL has several other features not used by mortgage to facilitate easy experimentation

with different constraint solvers.

Higher-order programming: Procedures are first-class values, and higher-order terms
can be created, passed around, and called using the call/n built-in.

In the following example, map/3 is used to define a predicate that prepends a string to
every element in a list of strings (the underscore ‘_’ represents an anonymous variable which
is not used). It uses the predicate append_strings/3 (from the string library) to perform

the prepending.

:— pred prepend_all(string, list(string), list(string)) is det. (L1)
:- mode prepend_all(in, in, out) is det. (L2)
prepend_all(Str, List, NList) :- (L3)
P = append_strings(Str), (L4)
map(List, P, NList). (L5)

3The first mode cannot actually succeed more than once, however the HAL compiler cannot determine
this. See Section 6.7.3 for an explanation and work-around.

10 CHAPTER 2. A NEW CLP LANGUAGE

:- pred map(list(X), pred(X, Y), list(Y)). (
:- mode map(in, pred(in, out) is det, out) is det. (
map([1, _, [1). (L8
map([X | Xs], Pred, [Y | Ys]) :- (
call(Pred, X, Y), (
map (Xs, Pred, Ys). (

=
—_
—_
~

The higher-order unification in line (L4) creates a higher-order term, or closure, by a partial
application of append_strings/3, which captures the variable Str. This closure is now
treated like a procedure of arity two, and can be passed to map/3. When the closure is
applied in line (L10) the arguments X and Y are added to the already captured arguments,

and the closure executes equivalently to the first-order call append_strings (Str, X, Y).

Herbrand constraint solving: As mentioned, the core language only supports basic
operations such as assignment, tests for equality, and the construction and deconstruction
of ground terms. However, HAL also provides a Herbrand constraint solver for each term
type that is an instance of the built-in herbrand type class.* To use the Herbrand solver

for a type within a module requires a herbrand declaration such as:
:— herbrand list/1.

The Herbrand solver supports full unification and, thus, the use of true logic variables and
support for logic programming idioms such as difference lists. Herbrand constraint solving

is discussed in more detail in Chapter 5.

Constraint handling rules: Constraint handling rules (CHRs) [16] are a flexible mech-
anism for writing incremental solvers. They consist of multi-headed guarded rules that
repeatedly rewrite a constraint store until it is in a solved state. CHRs typically “sit on
top” of the host language; HAL CHRs may contain HAL code, and are compiled into HAL
code at an early stage of compilation. HAL CHRs are described in detail in [27].

Dynamic scheduling: HAL provides a delay construct for performing dynamic schedul-
ing [41], allowing goals to be delayed until a condition is satisfied. Dynamic scheduling is

useful for writing solvers, and for extending and combining existing solvers.

Global variables: Restricted “global variables”, only visible within a module, allow ef-
ficient implementation of persistent constraint stores. They are not intended for general
use, but only for use within solvers. They behave similarly to C’s static variables by “re-
membering” their values between predicate calls. They are available in backtrackable and
non-backtrackable flavours. HAL does not support the standard Prolog predicates assert
and retract, but global variables can be used as a replacement for some of their typical

uses.

4See [17] for details of the herbrand type class. Constructor types can be made instances of herbrand
simply by annotating their type declaration with “deriving herbrand”.

2.4. HAL, A THIRD GENERATION CLP LANGUAGE 11

2.4.3 Current Implementation

The HAL compiler is written in the intersection of HAL and SICStus Prolog [58]; it has not
bootstrapped yet, so it is currently executed using the SICStus Prolog compiler.

The HAL compiler consists of approximately 34,000 lines of code (excluding blanks and
comments). Most of it is written in HAL, including the analysis framework, which comprises
just over 3,000 lines, and the operations for the four analysis domains examined (groundness,
sharing, freeness and determinism) which make up about 2,500 lines. The HAL standard
library contains approximately 9,000 lines of code.

The generated Mercury files are compiled by the Melbourne Mercury Compiler. The
only special requirement of the Mercury compiler is that the “reserved tag” compile grade
[21] must be used in order to support Herbrand constraint solving. This is explained in
Section 5.2.2.

12

CHAPTER 2. A NEW CLP LANGUAGE

Chapter 3

Program Analysis

In this chapter, we survey the analyses for correctness required for checking HAL programs,
and some analyses which could be used to optimise generated code. From the characteristics
of these analyses, we justify the chosen form of the analysis framework. We then describe
the representation of programs used within the HAL compiler, and some preliminary trans-
formations that convert a program into this representation before the analysis framework is
used. Finally, we introduce the basics of abstract interpretation and formally define several

semantics and uses of the framework.

3.1 Analysis in HAL: An Overview

When considering analyses in HAL, it is important to remember that HAL uses Mercury
as a target language. Mercury was chosen as HAL’s target language to take advantage
of the many optimisations the Melbourne Mercury Compiler performs to generate efficient
code. To avoid repeating work, the analyses performed by HAL should overlap with those
performed by Mercury as little as possible. With this fact in mind, let us survey the relevant

analyses for correctness and optimisation in HAL.

3.1.1 Analyses for Correctness

The HAL compiler must reject any program that does not safely satisfy its type, mode and

L These three kinds of declarations capture a large number of

determinism declarations.
common program errors, reducing program development time, and improving correctness.
They also allow more specialised execution algorithms to be used, improving performance.?

The HAL compiler must perform type, mode and determinism analyses — even though
the Mercury compiler also performs these analyses — for two reasons. Firstly, for useability’s
sake the HAL compiler must perform these analyses to allow informative error messages; it is

not reasonable to require a programmer to inspect a machine-generated Mercury file in order

ISome “safe” violations of these declarations are allowed, but cause warnings to be issued.
2See [11] for figures on the performance improvements attributable to type and mode declarations, and
Section 6.7.2 for figures on the performance improvements due to determinism declarations.

13

14 CHAPTER 3. PROGRAM ANALYSIS

to understand an error message, and then determine how this error in the machine-generated
file corresponds to that of the original program!?

Secondly, there are significant differences between the analyses required by the two lan-
guages. For example, HAL’s type analysis contains a phase for inferring class constraints for
the built-in type classes eq/1 and solver/1 [17]; this phase has no corresponding phase in
Mercury. HAL’s type analysis also uses a different algorithm for performing type inference,
which translates a HAL program with type definitions into a logic program from which
predicate and variable types can be inferred, using efficient constraint solving methods [13].
This method is more efficient than that currently used in the Mercury compiler; there are
plans to change the Mercury compiler to use the same technique.

Mode analysis is also quite different in HAL and Mercury; HAL allows 0ld variables,
whereas Mercury does not; constraint solvers introduce further significant differences. Mode
analysis is a quite complex operation in which the compiler performs multi-variant speciali-
sation, generating separate code for each procedure of a predicate. See [19] for a description
of the algorithm used.

Determinism analysis is the simplest of the three analyses for correctness, being a bottom-

up analysis. It is the analysis for correctness that is most similar to Mercury’s [22].

3.1.2 Analyses for Optimisation

The Mercury compiler performs a large number of optimisations, both high-level (e.g. in-
lining, higher-order and type specialisation, and deforestation [61]) and low-level (e.g. early
discarding of nondet frames, jump-to-jump short-circuiting, tail call optimisations, etc.
[56, 54]). Because the Mercury compiler does a very good job with these, the optimisations
we concentrate on at the HAL level are those involving language features not supported by
Mercury.

One prime candidate is Herbrand constraint solving — in particular the unification
of terms involving old instantiations.* If certain properties are known about the terms
being unified, unification can be simplified. For this purpose, several well-known analyses
used in Prolog compilers are applicable, such as those inferring groundness [10, 40], sharing
[28, 57] and freeness [47, 8] information. A typical approach to such analyses is to provide
a general top-down abstract interpretation-based analysis framework into which different
analysis domains can be easily “hooked” by providing certain basic domain operations.
These analyses all fit naturally within such a framework.

Some solver-specific optimisations can also significantly improve the speed of programs
that use certain constraints heavily. For example, information from the domain LSign [43]
can be used to optimise programs using linear arithmetic constraints. The analyses required
for these optimisations typically also fit within generic top-down analysis frameworks. Also,

3A better alternative is to avoid having the Mercury compiler perform these analyses. Since a compiled
HAL program is known to have correct types, modes and determinisms, they need not be checked by
the Mercury compiler. A long-term aim for HAL is to bypass these analyses by passing the appropriate
data structures directly to the “middle” of the Mercury compiler. This would speed up compilation times
considerably.

4Mercury does not support Herbrand constraint solving, as it only provides a limited form of unification.

3.1. ANALYSIS IN HAL: AN OVERVIEW 15

because HAL is designed for writing new solvers, it is quite feasible that new solvers will
benefit from new analyses over different abstract domains. The ability to “plug in” a new

analysis domain easily is therefore very useful.

3.1.3 Analyses Chosen for HAL

Having examined the required and desired analysis phases for the HAL compiler, we can

draw the following conclusions.

Type analysis must be done first, as it selects the predicate used by every call in the

program, resolving any overloading. It uses a highly specific algorithm to do this.

e Mode analysis must be done second, because it specialises each predicate as one or

more procedures. It too uses a highly specific algorithm.

e Determinism analysis can be performed any time after mode analysis. It is less spe-
cialised, being a fairly straightforward bottom-up analysis.

e Analyses for optimisation can also be performed any time after mode analysis. Anal-
yses for optimising built-in language operations such as unification can be performed
within a generic top-down framework. Solver-specific analyses can also be easily added

to such a framework.

The decision to implement a generic top-down analysis framework for the HAL compiler was
decided by the final point. A framework supporting goal-dependent analysis was chosen;
broadly speaking, goal-dependent analysis is generally more accurate than goal-independent
analysis.> One recognised problem with goal-dependent analysis is the difficulty of handling
context-sensitive calls to external modules and libraries. For example, Bagnara et al. state
in [1] that this “is one of the reasons why focusing only on goal-dependent analyses is, in
our opinion, a mistake.” To counter this problem, the HAL compiler implements a new
approach to inter-module analysis, first described in [6]. The implementation is described
in Chapter 7.

Since type and mode analysis use highly specific algorithms, they are not suitable for
fitting within an analysis framework. More generally, mode analysis cannot be performed
within the chosen generic analysis framework since it reorders literals, and the framework
relies on a fixed literal order. Type analysis also cannot be performed within the frame-
work for the same reason since it must be performed before mode analysis to determine
which procedures are available. This leaves only determinism analysis. One useful feature
of the chosen framework is that it can accommodate bottom-up analysis if certain paramet-

ric operations are defined appropriately. To avoid the effort of implementing a dedicated

5 Although this is not always true; [18] shows that in general the two approaches are incomparable, and
states that “the goal-dependent approach can be more accurate. However, the goal-independent based
approach may also be more accurate, and, in a certain sense, is inherently more accurate” (page 15).
Despite this, the empirical results given indicate that in practice goal-dependent approaches are generally
more accurate than the goal-independent approach.

16 CHAPTER 3. PROGRAM ANALYSIS

determinism analysis phase or a separate bottom-up analysis framework, the top-down anal-
ysis framework is also used to perform determinism analysis. Chapter 6 shows how this is

achieved.

3.2 Program Representation

This section compares possible structures of constraint logic programs, contrasting the re-
stricted canonical form typically used when describing analyses with the more expressive
super-homogeneous form used for HAL programs. It also describes the internal representa-

tion of programs in super-homogeneous form used within the HAL compiler.

3.2.1 Canonical Form of Constraint Logic Programs

Algorithms and analyses that operate on constraint logic programs are often defined only on
programs containing rules that are in a restricted canonical form, to simplify the analysis.

Such programs are expressed as multiple predicates, each containing one or more rules.
Each rule is a single conjunction of literals; multiple rules form an implicit disjunction.
If-then-elses typically aren’t covered.® Unifications are typically broken up into multiple
simpler wunification constraints, and procedure heads and user-defined constraints are nor-
malised so that their parameters are distinct. Higher-order programming is usually not

considered.

3.2.2 Super-homogeneous Form of HAL Programs

The HAL compiler performs a source-to-source transformation that converts programs into
super-homogeneous form [56] before type analysis. This form is similar to canonical form,
but is more expressive and closer to the original code written by the programmer. The steps

of the conversion are as follows.

Functions are converted to predicates, and nested function applications are flattened

into multiple predicate calls.”

Rule heads and procedure calls are normalised so all arguments are distinct variables
(this means no implicit unifications take place in a rule head).

Complex unifications are flattened by introducing intermediate variables and breaking
them into several simpler unifications having one of two forms.

1. X =Y, where both X and Y are variables.

2. X = f(Y1,...,Y,), where n > 0 and X,Y7,...,Y, are distinct variables; f may

be a predicate symbol, in which case f(Y1,...,Y,,) is a higher-order term.

Head variables of rules are renamed to be the same across all rules of a predicate.

6Most analysers treat an if-then-else (I -> T ; E) as a disjunction (I, T ; E). This might lead to
a loss of accuracy.
"Because of this, we will only consider predicates from this point onwards.

3.2. PROGRAM REPRESENTATION 17

e Multiple rules are combined into an explicit disjunction.

For example, the predicate append/3 is typically written like this:

append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :-
append(Xs, Ys, Zs).

After conversion to super-homogeneous form, it looks like this:

append(Xs, Ys, Zs) :-

(Xs =11,
Ys = Zs
Xs = [X | Xsi],
Zs = I:X | ZS]—],

append(Xs1, Ys, Zsl1)

3.2.3 Internal Representation of HAL Programs

Once mode analysis is complete, the program is in a form suitable for the analysis framework.
Each procedure contains a head and a single body, and all the complex language features
such as type classes, delay constructs, and CHRs have been converted to calls to compiler-
generated procedures. These are represented internally the same as user-defined procedures,
so the analysis framework does not need to treat them specially.

The four kinds of body remaining are as follows.

e Conjunctions: and(list(body)).
e Disjunctions: or(list(body)).
e If-then-elses: if-then_else(body, body, body).

e Literals: literal(literal_kind).

A conjunction contains at least two conjuncts. A disjunction contains at least two disjuncts.
An if-then-else contains three branches. Different kinds of bodies can be arbitrarily nested,
just as they were in the original program. Conjunctions, disjunctions and if-then-elses will
be referred to as compound bodies, or just compounds. Other information is also stored in
each body by this stage, such as its local variables, and the instantiation of each variable
at the program point immediately after the body. For simplicity this is omitted from this
presentation.

The three kinds of literal are as follows.

e Unifications: unify(var, term), where term is either a variable or non-variable term of
the form f(Y1,...,Y,) and Y7,...,Y,, are distinct variables.

18 CHAPTER 3. PROGRAM ANALYSIS

e Higher order unifications: unifyHO (var, ho_term), where ho_term is a closure of the
form h(Y1,...,Y,) and Y1,...,Y,, are distinct variables.

e Procedure calls: call(atom), where atom has the form p(Y7,...,Y,,) and Y, ..., Y, are

distinct variables.

Like bodies, literals also have other information associated with them, but again for sim-
plicity this information is omitted.
For example, the internal representation of the body of the super-homogeneous form of

append/3 given above is:

or ([and([literal (unify(Xs, (1)),
literal(unify(Ys, Zs))]),
and ([literal (unify(Xs, [X | Xs1l)),
literal (unify(Zs, [X | Zs1l)),
literal(call(append (Xs1, Ys, Zs1)))])]).

After mode analysis, the recursive call to the predicate append will be replaced by a call to

a specific procedure, and some of the literals may be reordered.

3.3 Theoretical Foundations

This section provides the theoretical basis for the analysis framework. It introduces abstract
interpretation — the formalism used to prove correctness of the analysis framework — and

describes the semantics used by top-down and bottom-up analyses.

3.3.1 Abstract Interpretation

Dataflow analysis is the process of statically inferring properties of variables, data structures,
and program fragments. A standard approach is to approximate the operations and data
used in the concrete execution of a program with abstract operations and descriptions of
data used in an abstract execution.

Since control may potentially pass through certain program points any number of times
during program execution, we cannot hope to achieve any kind of “complete” approxima-
tion, as the analysis would not be computable in general. However, if we settle for cruder
descriptions, we can perform analyses that are practical, yet accurate enough to be use-
ful. The general goal of the abstract execution is to annotate every program point with
a description approximating the values that data items may take at that point during the
concrete execution. In some cases, not every program point needs to be annotated.

For example, let us consider a simple groundness domain in which a description is a set
of all the variables in scope that are known to be ground,® and the following HAL program

(adapted from [18]), where each program point is annotated with a number &.

8 A more sophisticated groundness domain is described in Section 5.3.

3.3. THEORETICAL FOUNDATIONS 19

:- typedef nat -> (zero ; s(nat)) deriving herbrand.
:— herbrand nat.
:- pred le(nat, nat).
:- mode le(oo, 0o) is nondet.
le(X, Y) :-
(Ox=v®

®v=s512),D1ex, 2) @
).®

The use of the deriving herbrand and herbrand declarations and the oo modes means the
arguments of 1le/2 can have arbitrary instantiations. Let us assume that this predicate is
called from a context such that the second argument Y is known to be ground. Our analyser

should give the following descriptions of the ground variables at each program point:

@ ={v},

® = {X) Y})
@ = {v},

@ = {Y7 Z}:
® ={x, Y, 2},
® = {X, Y}.

Note that the descriptions 1, 2 and 6 are in terms of the variables {X, Y}, whereas descriptions
3-5 are in terms of the variables {X, Y, Z}, since Z is local to the second disjunct.’

This program point information tells us that if the second argument of a call to 1e/2 is
known to be ground then the second argument for all subsequent calls will also be ground,
and that all answers for such calls to 1e/2 will have both arguments ground.

The correctness of this kind of dataflow analysis is normally formalised in terms of
abstract interpretation [9]. The concrete domain (C) is approxzimated by descriptions in the
description domain (D), both of which are usually complete lattices related by a pair of

functions:

a:C — D, the abstraction function;

v:D — C, the concretisation, or “semantic function” for approximations.

The functions o and vy should be monotonic and form a Galois connection, i.e. for all D € D
and for all C € C:
a(C) <p D <= C <c (D),

where <¢ and <p are partial orderings on C and D respectively.

The idea of approximation is made precise as follows:

D € D approximates C € C iff C <¢ v(D).

9The treatment of local variables during analysis is made precise in the following section.

20 CHAPTER 3. PROGRAM ANALYSIS

This is abbreviated as D o« C.

The top (least precise) and bottom (most precise) elements of a lattice are denoted T
and L respectively.

Finally, let us call an element of P(Con) a constraint description, where P is the powerset
function and Con is the set of all constraints. A domain D of constraint descriptions is
downwards closed if for all D € D and e € Con, D x {e} whenever D x {e' | ¢’ F e}, where
F represents implication. Similarly, a domain D of constraint descriptions is upwards closed
if for all D € D and e € Con, D x {e} whenever D {€' | e F €'}. Intuitively, conjoining
two descriptions from a downwards closed domain will result in an equal or more precise
description; conjoining two descriptions from an upwards closed domain will result in an

equal or less precise description.

3.3.2 Top-down Analysis

The top-down goal-dependent approach [3] is commonly used for analysing constraint logic
programs. Its aim is to, for a particular domain, analyse a program for a set of initial calling
patterns that describe the contexts from which the program’s predicates (or procedures, for
HAL) are called. For each calling pattern a corresponding answer description is inferred.

The equations defining the general goal-dependent semantics for a description domain
D, genp, for canonical constraint logic programs were given in [18]. The semantics defined
below, top{)ML, is based on this definition of genp, with two major differences. Firstly, it
is extended to deal with full HAL programs, including explicit disjunctions, if-then-elses,
and the use of higher-order procedures. Secondly, since HAL is not an interactive language
(unlike many CLP implementations, it does not have an interactive environment), we do
not use an arbitrary goal G as the starting point for analysis as is done for genp. Instead,
we begin from a set of calling patterns, S, that describes the contexts from which the
procedures exported from a module may be called. Since HAL has a module system that
supports separate compilation, when compiling a single module we may not know all the
calling patterns with which the exported predicates might be called. Chapter 7 describes
the compilation approach used in the HAL compiler that allows an accurate initial set of
calling patterns S to be determined. For the moment, let us assume that we are given the
set of calling patterns to analyse.

The definition of the topgql' semantics is parametric. The domain D can be varied

together with the following (monotonic) auxiliary functions:

combp: P(Vars) x D x P(Vars) x D = D,
addp: ConxD — D,

disjp: P(D) — D,

if_to_thenp: D — D,

itep: DxDxD—D,

inrestrictp: P(Vars) x D — D,
outrestrictp: P(Vars) x D — D,
extendp: P(Vars) x D — D.

3.3. THEORETICAL FOUNDATIONS 21

Vars is the domain of all variables. The function combp is used to combine the answer
description for a call with the description inferred for the procedure so far. This is similar
to abstract conjunction, but more general; in Section 3.3.3 we will see why we use it instead
of abstract conjunction. The function addp is similar, but “adds” a primitive constraint to
a description. The function disjp combines descriptions from the disjuncts of a disjunction.
The function if_to_thenp determines the context in which the then branch of an if-then-else
will be analysed, and itep combines the three descriptions of an if-then-else. The function
inrestrictp is used to restrict (or project) a description onto the variables of a procedure
call, outrestrictp is used to project a description onto a smaller set of variables, and extendp

is used to extend a description onto a larger set of variables.

Definition 3.1: The top-down semantics, topqu, for a domain D, HAL program P and

set of initial calling patterns S is the least fixpoint of the following equations:

topAL (P, S) = {let B = body of H in
H : Dy +— Proc(H <+ B,Dy) | H: Dy € S},
Proc(H < B,Dy) =let V = vars(H) U local_vars(B) in
outrestrictp(vars(H), Body(B,V, extendp(V, Dr))),

Body(and(Bs),V, Dp,.) = AndBodies(Bs,V, D),
Body(or(Bs),V, Dpre) = OrBodies(Bs,V, Dyye),
Body/(if-then_else(Bif, B, Bei), V, Dpre) = ITEBodies(Bif, Bih, Bei, V, Dpre),
Body(literal(L),V, Dpy.) = Literal(L,V, D),
AndBodies(nil, V, Dpre) = Dpye,
AndBodies(B : Bs,V, Dpy.) =

let V! =V U local_vars(B) in

AndBodies(Bs, V, outrestrictp(V, Body(B, V', extendp(V', Dpre)))),
OrBodies(Bs,V, Dy,.) =

disip({let V' =V U local_vars(B) in

outrestrictp(V, Body (B, V', extendp(V', Dpre))) | B € Bs}),

ITEBodies(By, By, Be, V, Dyye) =

let Vigs, = V' U if-then_local_vars(Bjs, By,) in

let Vi = Vign U local_vars(Byy) in

let Vip, = Vign U local_vars(Byy,) in

let Vo = V U local_vars(Byg) in

let Dl{f = outrestrictp(Vign, Body (Bis, Vi, extendp (Vig, Dpre))) in

let Dy, = outrestrictp(V, Body (B, Vin, extendp (Vi, if_to_thenD(szf)))) in

let D¢y = outrestrictp(V, Body (Bei, Ver, extendp (Ver, Dpre))) in

itep (outrestrictp(V, Dgf), D, Do),
Literal(L,V, D,,.) = addp(L, Dpre) when L € Con,
Literal(L,V, Dpr.) = combp(V, Dppe, vars(A), Atom(A, Dyre)) when L = call(A),
Atom(A, Dpre) = let R = defnp(A) in Proc(R, inrestrictp(vars(A), Dpre)),

where the auxiliary functions addp, disjp, if-to_thenp, itep, inrestrictp, outrestrictp and

extendp must approximate the equivalent functions over P(Con): add, disj, if-to_then, ite,

22 CHAPTER 3. PROGRAM ANALYSIS

restrict, restrict and extend respectively.

Note that the properties of the combp function are discussed below in Section 3.3.3.

Most of the equations have one or more body, literal, or atom parameters, plus two extra
parameters V and Dy or V and Dp.e. Dy is the calling description for the procedure H,
i.e. the context from which H is called. A calling pattern consists of a procedure head and a
calling description, e.g. H : Di. Dy is the pre-description, i.e. the description that applies
to the program point immediately before a compound body, literal or atom; similarly a
post-description is the description that applies to the program point immediately after a
body;!® V is the variables of interest, i.e. the set of variables that Dy or D, is in terms of.

The function vars returns the variables of an atom. The function local_vars returns the
local variables of a body; as is usual, variables are given the smallest possible enclosing
scope. The function if_then_local_vars returns the shared local variables of the if and then
branches of an if-then-else. The function defnp returns the procedure in P that has a variant
of the function’s argument as its head.

The result of the analysis is a set of calling pattern and answer description pairs of the
form H : Dy — Dgps.

To find the answer for a predicate H < B in the context of a calling description D,
the description is first extended onto B’s variables of interest. The answer for B is then
restricted onto the head variables to give the predicate’s answer description.

Conjuncts are considered one at a time. Each conjunct’s pre-description is extended onto
the conjunct to account for any local variables, then an answer is obtained and restricted
back onto the variables of the parent conjunction. The post-description of each conjunct
becomes the pre-description of the next, except for the final conjunct, whose post-description
is returned as the conjunction’s overall answer via the equation for the empty conjunction
nil.

A disjunction’s pre-description is extended onto the variables of interest of each of its
disjuncts. The answers from the disjuncts are restricted back onto the disjunction’s variables
of interest, and then combined using disjp to give the disjunction’s overall answer.'! For
most domains, disjp finds the least upper bound.'?

The equations for an if-then-else treat an if-then_else(B;s, By, Be) similarly to a disjunc-
tion of the form or(and(Bf, Buw), Ber), but with two differences.

1. The pre-description for the then branch is obtained by applying if-to_thenp to the
post-description of the if branch.

2. The overall answer for the if-then-else is obtained by applying itep to the answers for

the three branches.

The first difference is required for bottom-up analysis as shown in Section 3.3.4. The second

difference is required for determinism analysis; see Section 6.4.5 for more detail. Typically

10Note that in a conjunction one body’s post-description is the following body’s pre-description.
I Alternatively, we could first disjoin the descriptions and then restrict the result.
12Byt determinism is an exception; see Sections 6.4.3 and 6.4.4 for more detail.

3.3. THEORETICAL FOUNDATIONS 23

for top-down analyses, an if_then_else(Bf, B, Bei) can be analysed exactly as if it has the

form or(and(Bif, Bi), Ber). This is achieved by defining if_to_thenp and itep as follows:

if-to_thenp(D) = D,
itep (Dif, Din, Det) = disjp ({ Din, Det}).

Primitive constraints (which are assumed to include (higher-order) unifications) are “added”
to the pre-description using addp. All remaining literals are atoms “calling” a procedure.
The pre-description is restricted onto the atom’s variables, giving the calling description;
the answer for that calling pattern is then combined with the pre-description to obtain the
post-description.

For clarity, the top-down semantics does not mention program annotation. The anno-
tation can be made explicit by threading an annotation function and the parent procedure
calling description Dy through every equation, and modifying the annotation function when
literals are encountered with a call annotate(pp(L), Dy, D). This call associates the pair
(Dy, D) with the program point immediately before L.3

One complication not addressed by the above semantics is the construction and appli-
cation of higher-order terms. If a predicate is only called via a higher-order application, its
body will not be annotated if we exactly follow the above semantics. This can be fixed by
calling Proc for the procedure referred to by the higher-order term; to be safe the calling
description used should be T, except that any downwards closed information available for
the variables captured by the closure can be included (upwards closed information must
be discarded since the captured variables might be used between closure construction and
application). This approach can be seen in Section 4.4.

The top-down semantics and parametric functions together specify a dataflow analysis.

The implementation technique used to compute the least fixpoint is described in Chapter 4.

3.3.3 Two Variations of top*

The definition of the combp function in the topg% semantics in the previous section is

deliberately vague. This is because there are two basic variations of the semantics.

Variation one: The first variation of the top-down semantics captures the usual theoret-

ical view of goal-dependent analysis. It is obtained by requiring that:
combp(V,D,V' D" = conjp(D, extendp(V, D")),

and that the function conjp approximates the equivalent function conj over P(Con).
This corresponds to the semantics called stdp in [18]. This variation is adequate for
many abstract domains. However, the accuracy of the analysis for some domains can be

improved by introducing a more precise combp operation.

131t would be simple to annotate every program point, including those before and after every conjunction,
disjunction, and if-then-else; but for the optimisations used in the HAL compiler, it is only useful to record
literal pre-descriptions.

24 CHAPTER 3. PROGRAM ANALYSIS

Variation two: The operation combp(Vyre, Dpre, Veait, Dans) is used to combine the an-
swer description Dans for a call, which is in terms of the variables V.4, with the call’s
pre-description Dy, which is in terms of the variable set Ve, where Vo C Vipre. Consider
this predicate:

p(X,Y) :- q(X), r(Y).

The pre-description Dy, for q(X) will be in terms of the variables {X,Y}. Dy, is restricted
onto {X} to give the calling description for q(X). Once an answer description Dgys is
obtained for the call, it is combined with D, to give the pre-description for r(Y).

The call to combp is required to combine the answer description D 4, with the variables
not involved in the call. But in doing so, the information about the variables that are
involved in the call is added twice. In the example above, the pre-description for r(Y)
has had information about X added twice: once directly from D,y., and a second time
from Djps which was derived from Dp,.. This can be a problem for domains that are not
downwards closed — adding information twice can result in a much weaker and thus less
useful description.

Generally, the abstract combination operation combp does not need to be defined in
terms of abstract conjunction. By using a specialised version of combp, called combsy, we
can obtain more accurate results, and sometimes improve efficiency. The only restriction is

that comb;?“ must be safe according to the following definition from [18].

Definition 3.2: Let Vi C Vire, and C,C" € P(Con), and Dyre, Dans € D, and let
C'" = conj(restrict(Veqy, C), restrict(Veq, C'")). The specialised abstract combination opera-

tion comby " is safe if, whenever D, < C and Dans x C", we also have:

Combls)pec (Vpre; Dpre; Vcall; DAns) X CO'flj(C, Cl)

The second variation of the top-down semantics is obtained by replacing combp by combzy

which must be safe.

This corresponds to the semantics called specp in [18]. This variation will be at least
as accurate as the first; for downwards closed domains it will be equally accurate. On a
practical note, figures from [18] show that this variation is both more accurate and more
efficient than the first variation for the abstract domains SS and ASub, which are described
in Chapter 5.

3.3.4 Bottom-up Analysis

For bottom-up analyses each program fragment does not need to be considered in any kind
of context, but instead has a single “inherent” answer. Examples of bottom-up analyses
are type analysis (each term has only one type), and determinism analysis (each body in a
procedure has only one determinism).

The key idea for adapting the top-down framework to perform bottom-up analysis is
that every calling pattern should have the form P : truep. This means that each body can

be analysed in a context-free manner.

3.3. THEORETICAL FOUNDATIONS 25

Definition 3.3: The bottom-up semantics, botgﬂ', for a domain D, HAL program P and
set of initial calling patterns S is obtained from the top 4’ semantics by making two changes.

Firstly, we must impose restrictions to ensure truep is the only calling description used.

1. The set S should only contain calling patterns in which the calling description is truep.

2. The auxiliary functions inrestrictp and if_-to_thenp should be defined as follows:

inrestrictp(V, D) = truep,
if-to_thenp (D) = truep.

Secondly, we must replace the four Body equations from the top%m’ semantics with the

following equations:

Body(and(Bs),V, Dpre) = combp(V, Dpre, V, AndBodies(Bs, V, inrestrictp(V, Dpre))),
Body/(or(Bs),V, Dpre) = combp(V, Dyre, V, OrBodies(Bs, V, inrestrictp(V, Dpre))),
Body/(if-then_else(Big, B, Bet), V, Dpre) =

combp (V, Dpre, V,ITEBodies(Bif, B, Bei, V, inrestrictp(V, Dpre))),
Body (literal(L),V, Dpye) = Literal(L,V, D),

where combp(V, Dpre, V, Dans) is defined in the manner described for the first variation of
topHAL in Section 3.3.3.

By using inrestrictp, we ensure the compounds have the calling description truep, and
are thus analysed in a context-free manner. Once an answer is obtained, it is conjoined with
the pre-description using combp — if defined in the manner described for the first variation
of topg% in Section 3.3.3, combp finds the conjunction of its second and fourth arguments
when its first and third arguments are the same, as they are here.

Also, when performing a bottom-up analysis the calls to annotate are not necessary,
since we are only interested in the answer descriptions for procedures.

See Section 4.9.7 for a discussion of the practical efficiency consequences of “under-
utilising” the top-down framework in this way. See Chapter 6 for details on how determinism

analysis is performed in this bottom-up manner.

26

CHAPTER 3. PROGRAM ANALYSIS

Chapter 4

Intra-module Analysis

The previous chapter provided the theoretical basis for HAL’s analysis framework. How-
ever, an implementation is much more complex. This is because it is not a simple task to
efficiently find the least fixpoint of a set of semantic equations. In this chapter we describe
the implementation of HAL’s analysis framework in detail.

Several generic abstract interpretation engines have been built for constraint logic pro-
gramming languages (e.g. [48, 7, 33, 36]). They all have sophisticated algorithms and data
structures for fixpoint computation, with the aim of producing the least program analysis
graph, i.e. the most precise finite representation of the (possibly infinite) set of (possibly
infinite) AND-OR trees explored by the concrete execution of a program [3].

HAL’s analysis framework is similar, being based on the algorithm from [23]. As pre-
sented, that algorithm is suitable only for canonical constraint logic programs, computing
the least program analysis graph corresponding to the least fixed point of the equations
for the standard semantics stdp given in [18]. The algorithm given in Section 4.4 extends
the original algorithm to handle HAL programs and allow bottom-up analysis; it computes
the least program analysis graph corresponding to the least fixed point of the equations for
either the top-down semantics top{)m’ defined in Section 3.3.2 or the bottom-up semantics
botL defined in Section 3.3.4.

Before presenting the algorithm itself, we outline some types and notation, and describe
the data structures and important operations. Afterwards, some important implementation

details are discussed.

4.1 Preliminaries

Let us now introduce the types and notation used in the algorithm.

Descriptions: D, possibly subscripted, represents a description in an abstract domain.
We assume that all description comparisons in the algorithm are purely syntactic, so de-

scriptions must be in some kind of normal form to ensure all equivalences are found.

27

28 CHAPTER 4. INTRA-MODULE ANALYSIS

Parents and children: A procedure head is considered a parent of the procedure body.
A compound body is a parent of the bodies it contains. Each parent has one or more
corresponding children, which may be compound bodies or literals. For example, consider

this procedure:

p(X, Y) :- q(X), r(Y).

The procedure head p(X, Y) is the parent of the conjunction q(X), r(Y). The conjunction
is the parent of the two literals q(X) and r(Y).

Calling patterns: H : Dy, P: Dp, B: Dg, A: D4 and C : D¢ are calling patterns for
procedure heads, parents, bodies, atoms (procedure calls) and closures respectively. Each
consists of the program part and its calling description, and each may be augmented with
the variables of interest that the calling description is in terms of, e.g. H(Vy) : Dy. These
variables are only shown where needed, although they are attached to all calling patterns in

the actual implementation.

Answers: Ans, possibly subscripted, represents an answer. The two possible answers
are unreached and answer(D), where D is an abstract description. An unreached answer
indicates that analysis has encountered a body or procedure, but has not yet determined its
answer description. An answer wraps the answer description of a body or procedure.

Once analysis is complete, a procedure’s answer may remain unreached. Because the
abstract execution approximates the concrete execution, this means the end of the procedure
is never reached, and the procedure must never succeed. This is possible if the procedure

always fails, infinitely loops, always aborts or always throws an exception.t

Arcs: The fixpoint computation is divided into units called arcs. Each arc represents a
“snap-shot” of the analysis just before a body. The variable Arc represents an arc, and has

this form:
P(Vp) : DP = [Dpre] B(VB)

P(Vp) : Dp is the calling pattern of the parent procedure head or body. D,y is the pre-

description of the next body B. Vg is B’s variables of interest.

4.2 Data Structures

There are three primary data structures used by the generic algorithm: the priority queue,

the answer table, and the arc table.

LOften abstract domains have an artificial bottom element that means “unreached”. But often they
don’t; by explicitly including unreached in the framework, we don’t have to add such an element to domains
that don’t naturally have them.

4.2. DATA STRUCTURES 29

4.2.1 The Priority Queue

The priority queue stores arcs. The analysis of one arc is the minimal unit of work performed
by the algorithm, and is called an event. The priority queue is initialised from the initial set
of calling patterns S. Arcs are dequeued and analysed one at a time; each event may cause
more arcs to be added to the priority queue. Analysis is complete when the priority queue
is empty.

The priority queue allows the analysis to calculate the least fixed point without specifying
a fixed order of the traversal of bodies. The order used depends on the priority strategy
of the queue, which is a parameter of the algorithm. Any strategy will work correctly, but
the efficiencies of different strategies will vary. The strategy used in the implementation is
described in Section 4.9.1.

One requirement for this generality is that when adding a new arc, any “similar” arcs
already in the queue must be replaced. This ensures old events that are now out-of-date
cannot be processed after more recent events. This requirement is explained in detail in
Section 4.6.

4.2.2 The Answer Table

The answer table records answers for procedures and compound bodies. It has four parts,
one for each kind of answer that needs to be recorded.

e Procedure answers have the form H : Dy — Ans.

e Compound body answers have the form B : Dg — Ans.

e Disjunct answers are recorded in the form B : Dg + list(Daps).

e If-then-else branch answers are recorded in the form B : Dp + (Ans;, Ansy,, Anse).

The last two parts require some explanation. Whenever an answer changes for a single
disjunct, the answer for the parent disjunction must be computed from all the disjunct
answers, each of which must be restricted onto the parent disjunction’s variables of interest.
To avoid repeatedly restricting disjunct answer descriptions, we record them separately in
the answer table.

Most other generic analysis frameworks do not work this way. Instead they join each
new disjunct answer description with the current parent disjunction answer description. We
cannot do this because we are interested in a domain, determinism, where disjp is not a
least upper bound. In this case, simply joining the new disjunct answer description with
the current disjunction answer description could give the wrong answer for the disjunction.

For example, consider this procedure:
p:-Caj;b).

Assume the first answer descriptions obtained for a/0 and b/0 are det and failure re-
spectively. The disjunction of these is det. Now assume the answer description for a/0 is
subsequently changed to semidet. If we disjoin the new disjunct answer description semidet

with the old disjunction answer description det, we get nondet, which is inaccurate. If we

30 CHAPTER 4. INTRA-MODULE ANALYSIS

instead compute the new description from all the disjunct answer descriptions, we get the
more accurate answer semidet.

If-then-else branch answers are treated similarly, except that three answers must be
recorded, rather than a list. We use answers instead of descriptions to allow for the possibility
of a branch answer being unreached; this is not necessary for disjunctions because we only
record answer descriptions for those disjuncts that have them (an empty answers list thus

implies the answer unreached for a disjunction).

4.2.3 The Arc Table

The arc table is used to ensure that the effect of each new answer is fully propagated.
It also allows a minimal amount of reanalysis to be performed whenever a procedure or
body’s answer is updated. Imagine a conjunction of the form (..., B, ...). Once this
conjunction has been analysed, the answer for B (for the appropriate calling pattern) may
be subsequently improved. If this occurs, part of the conjunction must be reanalysed. The
simplest approach is to reanalyse the whole procedure from scratch, but this unnecessarily
repeats prior work. It is more efficient to reanalyse from B onwards. This requires a “snap-
shot” of the analysis state just prior to B. By recording B’s arc in the arc table when we
encounter it, we can easily restart the analysis from exactly that point.

We need to record arcs for compound bodies and calls to local procedures, as their answer
descriptions can be improved during the course of the analysis. We don’t need to record
arcs for “constraints”, since their answers cannot change.

The arc table is also used once analysis is complete, for computing the module’s call
graph, and for determining which variants must be generated if multi-variant specialisation
is being performed. Sections 7.4.4 and 7.4.5 describe how this information is used. To
compute the call graph, arcs must also be recorded for calls to external procedures, even
though their answers can never change. Similarly, we must record arcs for procedures that
are only called via higher-order calls so they are included in this post-processing.

The arc table has three parts.

e Arcs for compound bodies (the compound arc table).
e Arcs for procedure calls (the call arc table).

e Arcs for procedures called only through higher-order calls (the higher-order call arc
table).

The first two parts are used in two different ways during analysis. Firstly, whenever a
new answer description is obtained for the child of a compound, we look in the compound
arc table to find the arc of the child’s parent. We can then add the parent’s arc to the
priority queue, ensuring it is processed again now that its answer may be different (note
that the parent’s answer can immediately be looked up — the compound does not need to
be reanalysed). This is how answer descriptions are propagated upwards within procedures.

Secondly, whenever an answer description for a local procedure is improved, we look
through the call arc table to find all the locations where that procedure is called with the

4.3. OPERATIONS 31

relevant calling description, allowing for variable renamings. Arcs are added to the priority
queue for all matching calls, which ensures that all procedures calling the updated calling
pattern are reanalysed from the point of the call onwards.

Because call arcs have the form P(Vp) : Dp = [Dpr] B(Vg), they do not contain the
calling description Dp for the body B. This is for space efficiency, as Dp does not need to
be computed for (higher-order) unifications and constraints. However, since the arc table
lookups are for a full calling pattern B : Dp, the calling description Dp must be stored with
the Arc itself in the arc table.

When adding arcs to the arc table, as when adding arcs to the priority queue, we must
replace any “similar” arcs to avoid processing out-of-date arcs after more recent ones. This

is explained in Section 4.6.

4.3 Operations

The following operations are used in the algorithm. We do not provide a definition for them
because they are quite straightforward. Note that the priority queue, answer table and arc

table are all assumed to be implicit global variables.

e add_event(Arc) adds an arc to the priority queue. It must replace any “similar” arcs

in the queue, as explained in Section 4.6.
e next_event() dequeues the next event from the priority queue.

e add_compound_arc(Are, Dg) adds an arc and its body’s calling description to the com-
pound arc table. It must replace “similar” arcs in the compound arc table, as explained
in Section 4.6.

e add_call_arc(Are,D4) adds an arc and its body’s calling description to the call arc

table. It too must replace “similar” arcs in the call arc table.

e add_HO_call_arc(Are, Do) adds an arc and its captured procedure’s calling description

to the higher-order call arc table. Again, it must replace “similar” arcs.

e add_proc_answer(H : Dy — Ans) records a new local procedure answer in the answer

table, overwriting any old answer.

e add_compound_answer(B : Dg — Ans) records a new compound answer in the answer

table, overwriting any old answer.

e add_disjunct_answer_desc(P : Dp, B, D) records the restricted answer description D for
disjunct B in disjunction P’s list of disjunct answer descriptions, overwriting any old
answer description for B. If this is P’s first disjunct answer description, it creates the
list before adding D.

e add_ite_branch_answer_desc(P : Dp, B, D) records the restricted answer description for

branch B? of if-then-else P as answer(D), overwriting any old answer for B. If this is

2In the implementation it is possible to tell which if-then-else branch a body B is from its parent P.

32

CHAPTER 4. INTRA-MODULE ANALYSIS

P’s first branch answer description, it creates a triple (unreached, unreached, unreached)
before adding D.

get_disjunct_answer_descs(P : Dp) gets the list of restricted disjunct answer descriptions
for the disjunction with the calling pattern P : Dp.

get_ite_branch_answers(P : Dp) gets the triple of restricted branch answers for the

if-then-else with the calling pattern P : Dp.
annotate(L, Dp, D) annotates a literal with the description pair (Dp, D).?

vars(A) returns the set of variables in an atom. Due to normalisation, every variable
in an atom is distinct, so the set’s cardinality will be equal to the atom’s arity.

local_vars(B) finds the set of local variables of a body.

if_then_local_vars(B) finds the set of local variables shared by the if and then branches
of an if-then-else.

arity(A) returns the arity of an atom.

compute_call_graph() uses the arc table to compute the call graph and determine which

variants need to be generated.

In the framework implementation, the parametric operations of the algorithm become the

methods of a type class named abstract_domain. An abstract description type must be an

instance of this class to be used within the framework. The methods are as follows.

e Acomb, Aadd, Adisj, Aif_to_then, Aif_then_else, Aoutrestrict, Ainrestrict and Aextend

should implement the functions from Section 3.3.2: combp, addp, disjp, if to_thenp,
itep, outrestrictp, inrestrictp and extendp respectively; the only variation is that Aadd
and Acomb should return an answer rather than just an answer description (to allow
unreached). Each function should be monotonic and approximate the corresponding

concrete functions.

Note that the variation of the topg% semantics used depends entirely on the definition

of Acomb, as described in Section 3.3.3.
Abottom(V') returns L over the variables in V' for the abstract domain.

Ainitial_guess(H : Dy) returns an initial answer for an encountered local procedure.
The simplest option is to return unreached, although if an answer for a more specific
calling pattern has been found, it can be used as a first approximation. If an answer
description is returned, it must be below the least fixed point for the procedure.

3 Attentive readers will note that Section 3.3.2 discussed annotation pairs of the form (Dg, D), i.e. pairing

the literal’s description D with the procedure head description Dy rather than the description Dp of the
parent, which may be a compound. In the implementation, we record Dp rather than Dp. Since the
(D, D) form is required for multi-variant specialisation (see Section 7.4.5), compute_call_graph converts
from the (Dp, D) form to the (Dg, D) form when post-processing the arc table.

4.4. THE GENERIC ALGORITHM 33

e Ais_constraint(A) decides if an atom is considered a “constraint” for the domain. If it
is, its post-description will be obtained by Aadd rather than treating it like a normal
procedure call. This is useful if it is possible to return answers more precise than what
would be inferred by applying the algorithm to the definition of the constraint, e.g. if
specific domain knowledge can be used. Also, it allows answers to be provided for

constraints for which the code cannot be analysed (e.g. if it is written in C).

e Acalling_descHO(Vy : Dg) is used when computing the calling description for proce-
dures called via higher-order calls. Vp is the set of head variables of the procedure
captured by the closure. The calling description Dy will only contain information

about the variables that were captured by the closure.

For top-down analyses, it must return T over Vp, except it can retain downwards
closed information from Dg. For bottom-up analyses, it must return truep, in the

same way that Ainrestrict does.

e Aexternal_proc(P : Dp) obtains an answer description for a call to a procedure not
defined in the analysed module. One approach is to return T as the answer description
— this is simple, safe, but inaccurate. Chapter 7 describes a compilation approach that
leads to much more accurate answers for calls to external procedures. This operation

must also handle higher-order applications made using call/n.*

4.4 The Generic Algorithm

The algorithm is shown in Figures 4.1, 4.2 and 4.3. It is defined in terms of the following

main operations.

e analyse adds an arc to the priority queue and an initial answer to the answer table
for every calling pattern in S. It also contains the main loop which processes arcs one

at a time until completion. Finally, it calls compute_call_graph to finish processing.

e new_proc_CPis called whenever a local procedure is encountered as part of a previously
unseen calling description. The calling description is extended onto the variables of
interest of the procedure body to obtain its pre-description. The arc for the body is
then added to the priority queue, and the initial answer obtained using Ainitial_guess

is added to the answer table and returned.

e process_arc forms the heart of the analysis. It performs a single step of the left-to-
right traversal of a body.

If the body is a (higher-order) unification or “constraint”, we annotate the literal with
the pre-description, and then use Aadd to determine the post-description. If the literal
is a higher-order unification, we also call handle_unifyHO to ensure the procedure

from which the closure is built is analysed.

4Being a built-in, call/n is defined in HAL’s system module and thus is always external.

34 CHAPTER 4. INTRA-MODULE ANALYSIS

analyse(S)
foreach H : Dy € S
new_proc_CP(H (vars(H)) : Dg)
while Arc := next_event()
process_arc(Arc)
compute_call_graph()

new_proc_CP(H (Vi) : Dg)
let B := body of procedure H
Vg := Vi U local_vars(B)
Dpre = Aextend(VB, DH)
add_event(H (Vi) : D = [Dpre] B(VB))
Ans;nit := Ainitial_guess(H : Dg)
add_proc_answer(H : Dy + Ans;n;t)
return Ans;,i;

process_arc(Arc)
let P(Vp) :Dp = [Dpre] B(VB) = Are
if (B = literal(L))
if (L = unify(-,-)) or (L = unifyHO(_,-)) or (L = call(A) and Ais_constraint(A4))
annotate(L, Dp, Dpy.)
Ans := Aadd(L, Dpy)
if (L = unifyHO(_,C))
handle_unifyHO(Are, Dpre, C)
elseif (L = call(A))
D4 := Ainrestrict(Va, Dpre)
annotate(L, Dp, D4)
Ans := get_proc_answer(Are, Vp, Dpre, A(VB) : Da)
else
Dg := Ainrestrict(Vg, Dpre)
Ans = get_compound_answer(Arc, Vp, Dpre, B(Vg) : Dg)
if (Ans = answer(Dpost))
if (P is a procedure head)
update_proc_answer(P : Dp, Aoutrestrict(Vp, Dpost))
elseif (P = and(Bs)) and (there is a conjunct Bje.: following B in Bs)
Viest := local_vars(By,ezt)
add_event(P(Vp) = [Aextend(Vyeqt, Aoutrestrict(Ve, Dpost))] Breat(Vaest))
elseif (P = if_then_else(Bjf, B, -)) and (B = By)
Vigen, := if_then_local_vars(B;f, By,)
D;, s := Aoutrestrict(Vifin, Dpost)
add_ite_branch_answer_desc(P : Dp, By, Aoutrestrict(Vp, D))
Vin := Vi, U local_vars(By,)
add_event(P(Vp) : Dp = [Aextend(Vi, Aif_to_then(D,,,,))] Bin(Vin))
else
update_compound_answer(P(Vp) : Dp, B, Aoutrestrict(Vp, Dpost))

Figure 4.1: Generic analysis algorithm (I)

If the body is a procedure call, we restrict the pre-description onto the call variables,

annotate it, and then obtain an answer using get_proc_answer.

Otherwise, the body is a compound. First we Ainrestrict the pre-description onto

4.4. THE GENERIC ALGORITHM 35

handle_unifyHO(Are, Dpye, C)

let H := head of procedure used in closure C

let VT := first arity(C) vars in H

D¢ = Ainrestrict(vars(C), Dpre)

DY := rename D¢ replacing vars(C) with V2

Dy := Acalling_descHO(vars(H) : DY)

if not(there exists a renaming o s.t. o(H : Dg) — _ in answer table)
add_HO_call_arc(Are, D¢)
new_proc_CP(H (vars(H)) : Dg)

get_proc_answer(Arc, Vp, Dpre, A(Va) : Dy)

add_call_arc(Are, D4)

if (A is a call to an external procedure)
Ans := answer(Aexternal_proc(A : D))

elseif (there exists a renaming o s.t. o(A : Dy) — Ans in answer table)
Ans := o~ (Ans)

else
Ans := new_proc_CP(A(V4) : Da)

return do_comb(Vp, Dpre, Va, Ans)

get_compound_answer(Arc, Vp, Dpre, B(VB) : DB)

add_compound_arc(Arc, Dg)

if not(B : D — Ans is in the answer table)
Ans := new_compound_CP(B(Vg) : Dp)

if (analysis is bottom-up)
return do_comb(Vp, Dy, Vg, Ans)

else
return Ans

new_compound_CP(B(Vp) : D)
if (B =and(By :.))
V1 := Vi U local_vars(B;)
add_event(B(Vg) : Dp = [Aextend(Vy, Dg)] B1(V1))
elseif (B = or(Bs))
foreach disjunct B; in Bs
V; := Vg U local_vars(B;)
add_event(B(Vp) : Dp = [Aextend(V;, Dp)] B;(V;))
elseif (B = if_-then_else(Bjf, B, Ber))
Vir := Vp Uif_then_local_vars(B;s, Bs) U local_vars(Bjy)
Ver := Vg U local_vars(By;)
add_event(B(Vg) : Dp = [Aextend(Vis, Dg)] Bif(Vif))
add_event(B(VB) :Dp = [Aextend(Vel,DB)] Bel(Vel))
add_compound_answer(B : Dg + unreached)
return unreached

Figure 4.2: Generic analysis algorithm (IT)

the body. This does nothing for top-down analyses, but is required for bottom-up
analyses so that the compound is analysed with the calling pattern truep. We then

use get_compound_answer to get the answer for the compound.

Now the answer obtained for the body is dealt with. If it is unreached, we can do

36 CHAPTER 4. INTRA-MODULE ANALYSIS

update_proc_answer(H : Dy, Dyey)
Anspew := answer(Dyey)
find the renaming o s.t. o(H : Dg) — Ans,g in answer table
if (Anspew # 0 1(Ansoa))
add_proc_answer(H : Dy — Anspeq)
foreach entry (Arc, Dg) in the call arc table
let _:_=[] B:= Arc
if (there exists a renaming o s.t. o(H : Dyy) = B : Dp)
add_event(Arc)

update_compound_answer(P(Vp) : Dp, B, Dyey)

if (P = and(.))
Anspew := answer(Dyey)

elseif (P = or(L))
add_disjunct_answer_desc(P : Dp, B, Dycq)
Ds := get_disjunct_answer_descs(P : Dp)
Anspew := answer(Adisj(Ds))

elseif (P = if_then_else(_, _,_))
add_ite_branch_answer_desc(P : Dp, B, Dy,cu)
(Ansif, Ansu, Anse;) := get_ite_branch_answers(P : Dp)
Djs:= ite_answer_to_desc(Ans,-f, Vp)
Dy, = ite_answer_to_desc(Ansth, Vp)
D := ite_answer_to_desc(Ansel, Vp)
Anspew = answer(Aif_then_else(D;s, Dip, Der))

find entry P : Dp — Ans,q in answer table

if (Ansnew ;é Ansold)
add_compound_answer(P : Dp — Anspew)
foreach entry (Arc, Dp) in the compound arc table

let _:_=[] B :=Arc
if (P:Dp =B':Dp)
add_event(Arc)

ite_answer_to_desc(Ans, Vp)
if (Ans = answer(Daps))
return Dy,
else
return Abottom(Vp)

do_comb(Vp, Dpre, VB, Ans)
if (Ans = answer(Daps))
return answer (Acomb(Vp, Dpre, Vi, Dans))
else
return unreached

Figure 4.3: Generic analysis algorithm (IIT)

nothing more for this body; if the program point immediately after the body is reach-
able a non-unreached answer will eventually be obtained for it, and an event will be

scheduled so the analysis will re-commence from this point.

If an answer description was obtained, the action taken depends on what kind of

parent the body has. If it’s a procedure head, we restrict the description onto the head

4.4.

THE GENERIC ALGORITHM 37

variables and update the procedure answer. If the body is part of a conjunction and
there is at least one more conjunct to analyse, we restrict the answer onto the parent
conjunction’s variables, extend it onto the next conjunct’s variables, and then add an
arc. If the body is the if branch of an if-then-else, we treat the if and then branches like
a two-body conjunction, except that we use Aif_to_then to determine the then branch’s
pre-description. We must also record the if branch answer, which is restricted onto the
variables of the parent if-then-else. If none of the above is true, we restrict the answer

onto the parent compound’s variables and update_compound_answer deals with it.

handle_unifyHO is called whenever we encounter a higher-order unification. It ensures
that any procedure only called via a higher-order call is analysed.

It restricts the description onto the closure’s captured variables, and then renames this
description and the closure to use the variables from the head of the captured proce-
dure. It then calls Acalling_.descHO which computes the best safe calling description
possible: T plus any downwards closed information known about the captured vari-
ables. Finally, if this calling pattern has not been seen before, we add the arc to the
higher-order call arc table (to be used by compute_call_graph) and call new_proc_CP

which schedules it for analysis (but we ignore new_proc_CP’s return value).

If the constructed closure is never actually used, this will analyse the captured pro-
cedure unnecessarily. However, since reachability is undecidable in general, we err on

the side of safety. In practice, it is extremely rare for a closure to be built but never
called.

get_proc_answer is called whenever we encounter a procedure call. First we add an
arc for the call to the arc table (recall that arcs for external procedures are needed to

compute the call graph once analysis is finished).

If the call is to an external procedure, we use Aexternal_proc to obtain an answer. Oth-
erwise the call is local. If the calling pattern has been seen before and we have an an-
swer for it (modulo variable renaming), we rename the answer appropriately (although
the answer may be unreached). If it hasn’t been seen before we use new_proc_CP, which

will return an initial answer and schedule an event so the procedure will be analysed.

If the answer obtained for the call is not unreached, we Acomb it with the pre-

description to obtain the post-description.

get_compound_answer is called whenever we encounter a compound. First we add an
arc for the compound to the arc table. If we have an answer for the compound —
unreached or otherwise — we use that (no renamings are necessary). Otherwise we
call new_compound_CP, which will return an initial answer and also schedule events so
that the children bodies will be analysed.

If we are performing a top-down analysis, this answer can be returned immediately.
However, if we are performing a bottom-up analysis, we must combine the answer
with the compound’s pre-description first, because the compound was analysed with

the context-free calling description truep.

CHAPTER 4. INTRA-MODULE ANALYSIS

e new_compound_CP is called when we encounter a compound as part of a new calling

description; the behaviour depends on the compound type.

If it’s a conjunction, we extend the pre-description Dg onto the variables of the first
conjunct and schedule an event for it to be analysed. If it’s a disjunction, we schedule
one event per disjunct, first extending the pre-description onto each disjunct’s variables
of interest. If it’s an if-then_else(Bf, B, Ber), we treat it similarly to how we would
treat an or(and(B;f, Bi,), Bei).

Regardless of the compound type, we install and return unreached as the compound’s

initial answer.

e update_proc_answer is called whenever we infer a new answer description for a local
procedure. If there was a previous answer and this answer is the same (modulo variable
renaming), we do nothing. Otherwise, we add the answer to the answer table, look
through the arc table to find all the other procedures in which this calling pattern has
been encountered (again modulo variable renaming), and schedule events so that all

those procedures are reanalysed from that point onwards.

e update_compound_answer is called whenever we infer a new answer description for a

child of a compound; the behaviour depends on the compound type.

If it’s a conjunction, we use the answer as given. If it’s a disjunction, we record the
restricted disjunct answer description, and then combine all the restricted disjunct
answer descriptions obtained so far, giving the new disjunction answer. If it’s an if-
then-else, we record the restricted branch description, obtain answer descriptions for
each of the three branches — using 1 for any branch with the answer unreached —
and then combine them with Aif_then_else. Note that this function is only called if an
answer has been obtained for one or both of the then and else branches, so Aif_then_else

will never be called with all three descriptions as L.

If there was a previous answer and this answer is the same, we do nothing. Otherwise,
we add the answer to the answer table, find any matching arcs for the compound in
the compound arc table, and schedule events so they are reanalysed. Note that for
top-down analyses at most one matching arc will still be up-to-date but the answers
obtained for any out-of-date arcs will not be propagated upwards because their parent
arcs will have been removed from the arc table (see Section 4.6). For bottom-up
analyses, there will always be exactly one match (that of the arc with the compound

calling description truep).

e ite_answer_to_desc turns a branch answer into a description; if the answer is un-

reached, it returns 1.

e do_comb is a simple wrapper for Acomb that lifts it to operate on answers.

4.5. AN EXAMPLE 39

4.5 An Example

We are now ready for an example. Consider the predicate 1e/2 from Section 3.3.1, repro-

duced here:

:- pred le(nat, nat).

:- mode le(oo, 0o) is nondet.

le(X, Y) :-
(X=Y
Y = s(2),
le(X, Z2)
).

First, let us consider the information flow that takes place when analysing this procedure,
independent of any particular analysis domain, as represented in Figure 4.4. The term
structure of the procedure is clear. Dotted arrows represent information flow; each arrow is
marked with a number that indicates the accompanying operation. Program point annota-
tions indicate the variables that an abstract description would be in terms of, for example
XYZ indicates that any description would be in terms of X, Y and Z. The head, compound
bodies and le(X,Z) call are annotated with their calling and answer descriptions.

The diagram does not show the addition and use of arcs in the arc table, nor does it show
the order in which events are processed. Only the first argument of each label operation is
shown.

We start from the calling pattern le(X,Y) : XY. All the downward pointing arrows
(1,3,6,8) extend parent descriptions onto the local variables of the child; the conjunction is
the only child body with local variables, so extension 6 is the only one that does anything.

The constraints X=Y and Y=s(Z) are handled by adding the literal to the pre-description
(4,9). The compound bodies and the call are handled differently. First the pre-description is
inrestricted onto the variables of the body (2,7,11); for top-down analyses this only changes
the description for the call 1le(X,Z), restricting it from XYZ to XZ.

The disjunction’s answer is obtained by disjoining the restricted answer descriptions of
its children (5,15). The pre-description for the call 1e(X,Z) is obtained from the post-
description of X=Y by restricting it back onto the variables of the parent conjunction, and
then extending it to include any singleton variables (10); in this case the restriction and
extension makes no difference. The call’s post-description is obtained by combining its pre-
description and answer description (12,13). The answer for the conjunction is the restricted
post-description of its last conjunct (14).

Finally, the procedure answer is found by restricting the answer of its child body (16).

This example shows that many of the calls to Aextend and Aoutrestrict are unnecessary;
five calls were made to each operation, and only one of each changed the description. This
observation inspired the optimisation described in Section 4.9.5.

Figure 4.5 shows how this form is “instantiated” for a simple groundness analysis of the
calling pattern le(X,Y) : {Y'}, which corresponds to that described in Section 3.3.1. Let us

40 CHAPTER 4. INTRA-MODULE ANALYSIS

le(X,Y) : XY —» XY

A
1 ;:16
v

XY OR:XY — XY

A A

15
v : v .
XY X=Y XY XYZ AND:XYZ — XYZ
' A 8 A A
e
8 V."'~.14
v :
XYZ y=s(Z) XYZ XYZ 1le(X,2) : XZ — XZ XYZ
: A AL A . A
9 10 11 13
e - 12
1. Aextend({X,Y}) 8. Aextend({X,Y, Z})
2. Ainrestrict({X,Y'}) 9. Aadd(1e(X,2))
3. Aextend({X,Y}) 10. Aoutrestrict({X,Y, Z}), Aextend({X,Y, Z})
4. Aadd(X=Y) 11. Ainrestrict({X, Z})
5,15. Aoutrestrict({X,Y}), Adisj 12,13. Acomb
6. Aextend({X,Y, Z}) 14. Aoutrestrict({X,Y, Z})
7. Ainrestrict({X, Y, Z}) 16. Aoutrestrict({X,Y})

Figure 4.4: Information flow during analysis of le(X,Y)

assume that the priority queue is a stack, and that disjunctions are placed on the stack in

reverse order so that the first disjunct is processed first.

We start with a single arc on the queue for 1e(X,Y) : {Y'}. Processing that leads to an
event for OR : {Y'}. When it is processed, arcs are added to the queue for the two disjuncts.
We process the base case X=Y first. Its answer is disjoined with the other disjunction answers
obtained so far (none), and the disjunction’s answer is updated to {X,Y}. At this point

we search the compound arc table for an arc matching OR : {Y'}, and find one; this arc

4.6. REPLACING SIMILAR ARCS 41

le(X,V): {V} —» {X,Y}

(Y} OR: {¥} & {X,¥)}

(Yl X=Y {X,V} (Y1 AND: {Y} » {X,Y,Z}

{Y} y=s(2) {Y,Z} {V,Z} 1leXx,2):{Z} » {X,Z} {X,Y,Z}
Figure 4.5: Simple groundness analysis of 1e(X,Y) : {Y'}

is added to the front of the queue. Processing it just involves looking up the disjunction’s
current answer; the first answer for the calling pattern le(X,Y) : {Y'} is thus {X,Y}.

The remaining arc on the queue is for the second disjunct’s calling pattern AND : {Y'}.
We process its conjuncts one at time to obtain its answer {X,Y}, looking up the current
answer for 1le(X,Y) : {Y} in the process for the call 1le(X,Z) : {Z}. The conjunction’s
answer is updated and its arc from the arc table re-scheduled and processed, propagating its
answer up to its parent disjunction. The answer {X,Y} for the second disjunct is disjoined
with the previous answer {X,Y} for the first disjunct, resulting in {X,Y}. Since this is the
same as the disjunction’s old answer, we don’t schedule any arcs from the arc table, and as
there are no remaining events in the queue, analysis ends.

This example showed how compound arcs are rescheduled when compound answers
change, but it didn’t show how call arcs are used when a procedure’s answer changes. They
would be used during a simple groundness analysis of le/2 if the priority queue strategy
is different to that above: if the recursive disjunct is processed first, the answer for the
le(X,Z) : {Z} call when first encountered is unreached and so analysis of that disjunct
cannot continue. The X=Y disjunct is then analysed and the answer {X, Y} obtained for the
calling pattern 1e(X,Y) : {Y'}. This is a renaming of the 1le(X,Z) : {Z} arc in the call arc
table, so it will be added to the queue and analysis of the recursive disjunct can continue

using the new answer.

4.6 Replacing Similar Arcs

When adding arcs to the priority queue and arc table during analysis, we must replace any

“similar” arcs to avoid processing out-of-date arcs after more recent ones, which could lead

42 CHAPTER 4. INTRA-MODULE ANALYSIS

to the wrong answer. A “similar” arc is one with the same parent calling pattern and body;
the pre-description (and calling description, for arc table entries) may be different. When
adding an arc P : Dp = [D,r] B to the priority queue, we must replace any arc of the form
P : Dp = [] B, and when adding an entry (P : Dp = [D,y] B, Dg) to the arc table, we
must replace any entry of the form (P : Dp =[] B,_). Let us consider why.

Replacing similar priority queue arcs: Consider this predicate:
p(X,Y) := qX), r(Y).

Assume p/2 is called with the calling description D,. After processing the call q(X), the

following arc is added to the priority queue:
Arc = AND : Dyyp = [Dpre] (YD)

(where AND : D,y is the conjunction calling pattern). Assume that the answer for q/1 is
now updated before that arc is processed. The updated answer means another arc is added

to the priority queue:

Arc' = AND: D,yp = [D],] T(Y).

pre

Arc is now out-of-date, but because any priority queue strategy is allowed, it is possible that
Arc' could be processed before Arc. The incorrect answer resulting from Are would replace

the correct answer from Arc’. Hence “similar” arcs must be replaced in the priority queue.

Replacing similar call arcs: Let us reuse the same example predicate. Assume we

process p(X,Y) : D and obtain an answer, adding the following entries to the call arc table:

Entry, = (AND : D,yp = [Dq] q(X), Dqc),
E'flt?"yr = (AND : DAND = [-Dr] r(Y)yDrc)-

Assume the answer for q(X) : Dy, is then changed. Analysis restarts at q(X) and proceeds
to r(Y) with a different pre-description D/; the following arc is now added to the call arc
table:

Entry. = (AND : D,y = [D}] £ (Y),D.,).

If D,. = D], and a new answer is subsequently obtained for r(Y) : Dy, both Entry, and
Entry!. will match the calling pattern and have their arcs added to the priority queue by
update_proc_answer. Because similar priority queue arcs are replaced, if the out-of-date
arc from Entry, is added second it could replace the arc from Entry., which would result
in a wrong answer. An alternative would be to store the two arcs in such a way that the
more recent Entry. will be chosen in preference to Entry_, but since Entry, is not of any
use once Entry. arises, it is simpler to replace it.

The problem arises because different call pre-descriptions can lead to the same calling
description, (i.e. Ainrestrict(V, D) can equal Ainrestrict(V, D') when D # D’). Thus when a
procedure answer is updated, more than one arc for a particular call could match under the
same parent calling pattern, one of which will be out-of-date. Hence “similar” arcs must be

replaced in the call arc table.

4.7. CORRECTNESS 43
Replacing similar compound arcs: Consider the following predicate:

Assume that the initial answer for a/2 leads to the following arc being added to the com-

pound arc table:
Entry = (AND : D,yp = [Dpre] OR, Dop)

(where OR : D,y is the disjunction calling pattern). Assume a/2’s answer is then updated
before the two disjuncts under Entry are analysed, which leads to the following arc being

added to the compound arc table:
Entry' = (AND : D,y = [D),.] OR,D],.).

Assume that the two disjuncts b(X) and b(Y) under Entry’ are analysed and an answer is
obtained for OR : D! . Since Entry’ matches the updated calling pattern, it is added to the
priority queue and analysed; the up-to-date answer is propagated upwards, and the answer
for p(X,Y) : Dy is updated.

Assume the two disjuncts under Entry are now analysed, and a new (but out-of-date)
answer is obtained for OR : D,,. Since Entry matches this updated calling pattern, it is
added to the priority queue, leading to an out-of-date answer for p(X,Y).

If Entry is replaced by Entry’ when Entry’ is added, this problem is avoided — when
the disjuncts under Entry are analysed and the answer for OR : D, is updated, there is no
out-of-date matching arc in the compound arc table. Hence “similar” arcs must be replaced
in the compound arc table.

4.7 Correctness

The algorithm computes the least fixpoint of the equations for either of the top{)W’ or botf)ML
semantics defined in Section 3.3 using chaotic iteration [9]. Although the order in which
events are processed is not fixed, the events themselves encode a left-to-right traversal of
the procedures, ensuring a unique result. For the least fixed point to be well defined the
abstract operations must be monotonic, Ainitial_guess must return a value below the least
fixed point, and Acomb must be safe. Under these assumptions we have the same correctness

result as the original algorithm from [23].

Theorem 4.1: For a program P and initial calling patterns S, the generic analysis algo-
rithm returns an answer table which represents the least program analysis graph of P and S.

The corollary of this theorem is that the strategy used by the priority queue does not affect

the correctness of the algorithm.

44 CHAPTER 4. INTRA-MODULE ANALYSIS

4.8 Differences Between Algorithms

Although the presented algorithm was based on the algorithm from [23], there are several
significant differences. This is because the original algorithm is not intended to closely rep-
resent an implementation, while the presented algorithm faithfully represents the framework

implemented in the HAL compiler. The main differences follow.

Compound bodies: The biggest difference is the move from canonical constraint logic
programs to HAL programs including explicit disjunctions and if-then-elses; the presence of
arbitrarily nested compound bodies necessitated the introduction of arcs and answers for
compounds. The different handling of calls and compounds throughout completely changed
the structure of the algorithm and the data structures. The scoping of variables within

nested bodies also complicated the extension and restriction of descriptions significantly.

Higher-order terms: The original algorithm did not mention higher-order terms at all.
The presented algorithm does, by ensuring that procedures only called via a closure are
analysed, and by keeping downwards closed information in calling descriptions from higher-

order unifications and applications.

Non-least upper bound disjp: The original algorithm always joined new disjunct answer
descriptions with the current disjunction answer. The presented algorithm instead records
the disjuncts individually, and performs Adisj on all the disjunct answer descriptions. This
is necessary to perform accurate determinism analysis, because it has a disjp operation that
is not a least upper bound.

Bottom-up analysis: Unlike the original algorithm, the presented algorithm can be used

for performing bottom-up analysis, increasing its generality and usefulness.

Optimisation: The original algorithm deliberately ignored several obvious optimisations.
For example, it used three types of events: newcall, updated and arc events. The newcall and
updated events indirectly caused more arc events to be scheduled; the presented algorithm
instead adds the appropriate arc events directly.

Also, the original algorithm restricted the pre-description of all literals to find the calling
description and stored it in all arcs, even though it is not necessary for (higher-order)

unifications and “constraints”.

Calls to external procedures: Unlike the original algorithm, the presented algorithm

distinguishes between calls to local and external procedures.

A more general semantics: The original algorithm used abstract conjunction, conjp,
and thus found the least program analysis graph corresponding to the least fixed point of
the equations for the standard semantics stdp from [18]. The presented algorithm uses

abstract combination, combp, resulting in a more flexible semantics that accommodates two

4.9. EFFICIENCY CONSIDERATIONS 45

variations, as seen in Section 3.3.3, the second of which can be more accurate and efficient

for some domains.

Incrementality: The original algorithm was designed for incremental analysis. Its main
part computed the least program analysis graph from scratch, and ancillary parts were used
to incrementally analyse a program that had had predicates added, removed or arbitrarily
changed.

The presented algorithm does not have these incremental parts, and the current imple-
mentation does not perform incremental analysis.® Part of the reason for this is that the
HAL compiler currently does not perform incremental compilation, and has no mechanism
for determining which parts of a module have changed since the last compilation. How-
ever, the presented algorithm could be extended quite straightforwardly to be incremental
— none of the changes made affect its potential for incremental analysis. Doing so would
require adding code for determining which procedures have changed, adjusting the initial
set of calling patterns S, and deleting affected entries in the answer table. Once this is done,

S and the answer table can be passed to the framework as is.

4.9 Efficiency Considerations

The presented algorithm is a fairly faithful representation of the implementation in the HAL
compiler. However, for the sake of clarity and generality, some details of the implementation
were omitted. If the presented algorithm is implemented naively, performance will be poor.

This section discusses several important efficiency considerations.

4.9.1 Priority Queue Strategy

We have seen that the priority strategy used does not affect correctness, but it does affect
efficiency. Different priority strategy approaches are discussed in [50]. There is a trade-off
between the complexity of the strategy and the number of arcs processed — using a more
sophisticated strategy can reduce the number of arcs processed, but adding and removing
events may take longer.

The strategy used in the implementation is extremely simple: the priority queue is a
stack, which treats the most recent events as having the highest priority. The only compli-
cation is that disjunct events are reversed before adding, and else branch events are added
before if branch events; this is so the base case of recursive predicates is (usually) processed
before the recursive case. This was found to reduce execution time by about 10-15% for
determinism analysis (see Chapter 6) of reasonably sized modules (e.g. more than 100 lines
of code).

5By incremental we mean that it supports incremental compilation in which only the parts of a program
that have changed (and related parts) must be recompiled and reanalysed. The presented algorithm is
incremental in a different sense — procedures are not reanalysed from scratch when an answer they depend
on changes, but are only reanalysed from the affected point onwards.

46 CHAPTER 4. INTRA-MODULE ANALYSIS

Several more complicated strategies were experimented with, such as ensuring all chil-
dren of a compound are analysed before the compound’s answer is propagated upwards.
Surprisingly, these strategies were no better than the simple stack-based strategy.

One drawback of the stack-based priority queue is that the cost of replacing “similar”
arcs in the queue is proportional to the length of the queue. When analysing larger modules,
the queue can become quite large (e.g. more than 300 events), and if the abstract domain
operations are cheap, the replacement check can take up a significant proportion of analysis
time (e.g. close to 40% for determinism analysis of large files, e.g. 2,000 lines of code). This
is annoying, since the check succeeds extremely rarely.

However, attempts to reduce the overhead of the check — such as breaking the queue into
multiple buckets, and using a hash function that allocates arcs with the same parent calling
patterns to the same bucket — did not improve execution time, since the other overheads
introduced negated any reduction in the time taken for the check.

Despite this, the analysis times shown in Section 6.7.1 for determinism analysis are still
quite fast. Also, determinism is an extreme example, because its abstract operations are
very simple. The relative cost of the replacement check is much smaller for other domains

which have more expensive abstract operations.

4.9.2 Arc Table Structure

The arc table is accessed in four different ways.

1. In update_proc_answer, we must find all call arc table entries that match a renaming

of a given calling pattern (there may be zero, one or many).
2. “Similar” arcs must be replaced in the call arc table.

3. In update_compound_answer, we must find all compound arcs that match a given

calling pattern (there may be zero, one or many).
4. “Similar” arcs must be replaced in the compound arc table.

If we do not choose our data structure carefully, one or more of these accesses will be linear in
the size of the table. Since all four accesses are frequent, this will adversely affect execution

time. The structure of the arc table used in the implementation is as follows:

typedef arc_tbl(D) -> arc_tbl(call_arc_tbl(D), comp_arc_tbl(D)).
:— typedef call_arc_tbl(D)

tree(proc_key, call_arcs(D)).
list(bdkey, list(pair(arc(D), D))).
tree(bdkey, list(pair(arc(D), D))).

:— typedef call_arcs(D)

typedef comp_arc_tbl(D)

Each type is parameterised by the abstract description D. The type tree/2 is a balanced
tree, and pair/2 is a simple pair type; both are from HAL’s standard library.

The call arc table’s primary index is a proc_key uniquely identifying each procedure;
the secondary index is a bdkey which uniquely identifies each body calling that procedure.

For each call to the particular procedure, we record the arc itself and its calling description.

4.9. EFFICIENCY CONSIDERATIONS 47

Access 1 finds the entry for a particular proc_key, and then traverses the list of all calls
to that procedure to find those which match the calling description (modulo renaming).
Access 2 finds a specific call by proc_key and bdkey, and then traverses the inner list to
find and replace the arc with matching parent description, if there is one.

If the number of procedures in a module is X, the number of calls to a given procedure P
in that module is Y, and the maximum number of different calling patterns any particular
call to P is involved in is Z, access 1 for P will have a complexity of O(log(X) + Y Z), and
access 2 will be O(log(X)+Y + Z). This is good since X can be reasonably large (e.g. more
than 100 in larger modules), whereas Y and Z are usually very small (Z is often equal to
one; for bottom-up analyses it is always one).

The compound arc table’s primary index is the bdkey uniquely identifying the compound
body (whereas there can be multiple calls to a procedure in a module, there is only one
occurrence of each compound body, so the compound arc table is simpler). For each body
there is a list of associated arcs.

Access 3 finds the entry for a particular compound by bdkey, and then traverses the
list to find all the arcs with a matching calling description. Access 4 also looks up a body
by bdkey, and again traverses the list, this time to find and replace the arc with matching
parent description, if there is one.

If the number of compounds in a module is X, and the number of different calling
patterns a given compound is involved in is Z, accesses 3 and 4 for that compound will
both have a complexity of O(log(X) + Z). Again this is good since X can be quite large
(e.g. more than 1000 in larger modules), but Z is usually very small (often equal to one; for
bottom-up analyses it is always one).

A simple experiment was performed in which the trees in the above types were replaced
with lists, various modules from the compiler itself were compiled, and determinism analysis
was timed using the SICStus Prolog timing predicates.® For very small modules (e.g. 87
lines of code) the list representation was just as fast, or possibly faster (difficult to tell, since
the times were very small). But not surprisingly, the tree version was up to 1.7 times faster

for larger modules (e.g. 1381 lines of code).

4.9.3 Dead Variable Removal

Normalisation of HAL programs introduces many intermediate variables, which can lead to
prohibitively large abstract descriptions. Many variables local to conjunctions will have their
last-use before the end of the conjunction, and thus they can be removed from descriptions

before then. For example:
P(X’ Y) B q(X, A), r(A’ B)’ S(B’ Y)-

In this predicate the variables local to the conjunction are A and B. A is last used in the call
r(A, B) and so can be removed from its post-description before the conjunction’s end. B

cannot be removed before the conjunction’s end since it is used in the last conjunct.

6Recall that HAL has not yet bootstrapped, and is currently executed through the SICStus Prolog.

48 CHAPTER 4. INTRA-MODULE ANALYSIS

The framework already restricts a conjunct’s post-description onto the variables of its
parent conjunction immediately; the dead variable removal can be neatly incorporated into
this operation. In the example above, we would restrict the post-description of r(A, B)
onto the variables of the parent conjunction, {A, B, X, Y}; but because A dies at this point,
we can instead restrict onto {B, X, Y}. We must also adjust the parent conjunction’s variables
of interest so that A is not considered for any subsequent conjuncts.

Prior to the analysis framework’s invocation, the compiler performs a textual liveness
pass that determines the last-use of every non-head variable in each procedure, specifically to
support this dead variable removal. Each abstract domain is required to provide a parameter
that indicates if dead variable removal should be performed. This is because for some
domains, such as LSign [43], restriction is very expensive. However, for domains where
restriction is not so expensive it is definitely worthwhile; much of the time it makes only a
slight improvement to efficiency, but in certain cases the difference is drastic. For example,
the benchmark hamil contains one predicate which defines a 50-node Hamiltonian path
graph. Normalisation breaks up the graph’s creation into more than 400 unifications, all in
a single conjunction. Without dead variable removal, sharing analysis (see Section 5.4) does
not complete within 10 minutes. With dead variable removal, sharing analysis takes only

25 seconds.

4.9.4 Avoiding Unnecessary Adisj and Aif_then_else Calls

For generality, the algorithm presented in Section 4.4 performs Adisj on all disjuncts every
time a new disjunct answer is obtained, to allow for domains in which Adisj is not a least
upper bound. Because this generality is only required for unusual domains such as deter-
minism (see Sections 6.4.3 and 6.4.4), abstract domains are required to provide a parameter
that indicates whether Adisj is a least upper bound, and thus whether each new disjunct
answer can be disjoined with the previous disjunction answer. This saves time by avoiding
unnecessary calls to Adisj, and saves space because disjunct answers do not need to be stored
in the answer table.

Similarly, for many domains Aif_then_else(D;s, Dip, Der) = Adisj([Din, Det]). Unnecessary
calls to Aif_then_else can be avoided by combining new then and else branch answers with
the previous if-then-else answer using Adisj. If so, the abstract operation Abottom is not
required, since it is only used when performing a non-least upper bound Aif_then_else.

A related optimisation is that the implementation only performs Adisj and Aif_then_else
operations if the answer for the disjunct or branch has changed.

Some experiments showed that the effect of these optimisations is quite small. Nonethe-
less, it is worthwhile because they are very simple, and result in strictly less time and space
being used. Also, if an abstract domain was implemented in which these operations were
expensive, the gains would be larger.

4.9.5 Avoiding Unnecessary Aextend and Aoutrestrict Calls

As we saw in Section 4.5, the framework calls Aextend and Aoutrestrict very frequently. A

simple analysis of several modules of the HAL compiler showed that approximately 85% of

4.9. EFFICIENCY CONSIDERATIONS 49

bodies do not contain any local variables. Because of this, the framework implementation
only calls Aextend and Aoutrestrict when the extension/restriction is onto a different set of
variables. For analyses in which these operations are not cheap, this could make a significant
difference. For analyses in which these operations are cheap, the difference is negligible.

It should be noted that this optimisation is carefully intertwined with the dead variable
removal described in Section 4.9.3. Sometimes a body has no local variables, but is the last
body in which one or more of a conjunction’s local variables are used. In such cases, we are

careful not to skip the call to Aoutrestrict which is needed to remove the dead variable(s).

4.9.6 Selective Annotations

As the algorithm is presented, all literals are annotated. In the implementation, abstract
domains are required to perform more selective annotation by providing a predicate that
succeeds if a unification or “constraint” should be annotated (this predicate is part of the
abstract_domain type class). Also, it allows abstract domains to annotate a literal with
something other than a description. This reduces space usage by avoiding unnecessary anno-
tations, and by reducing the size of annotations. Note that procedure calls and higher-order
unifications are always annotated with full descriptions to support multi-variant specialisa-
tion (see Section 7.4.5).

4.9.7 Efficiency of Bottom-up Analysis

It is worth considering the cost of performing a bottom-up analysis within the top-down
framework. We cannot perform an empirical comparison, since there is no dedicated bottom-
up analysis in the HAL compiler, and it would not be reasonable to compare the cost with
that of a bottom-up analysis from another compiler for a similar language. However we can

make some observations.

Unnecessary calling descriptions: Every calling pattern will have the form B : truep,
so the calling description truep is not necessary. This adds a small time overhead to the
framework, for superfluous construction and deconstruction of calling patterns, and unnec-
essary calls to Ainrestrict, Aif_to_then and Acalling_descHO (although these are extremely
cheap, as they return truep). Compared to the more complex operations performed by the
framework, the overhead should be negligible.

It also adds a space overhead to the priority queue, arc table and answer table, because
truep must be stored with every calling pattern. For many domains truep is a “small” value
(e.g. an empty set), in which case the overhead should again be negligible. Some domains
have a “large” truep, in which case the overhead may be more substantial. We have not
implemented any domains with a “large” truep, so it is hard to say how large this overhead

would be.

Unnecessary reanalysis: The analysis framework traverses procedure bodies left-to-
right. Whenever the answer for a procedure or compound is updated, the bodies to the

right of the updated body will be reanalysed. For example, consider this procedure:

50 CHAPTER 4. INTRA-MODULE ANALYSIS

P(X’ Y) B q(X, A), r(A’ B)’ S(B’ Y)-

Imagine the entire procedure has been analysed, and an answer obtained. The answer
description for the calling pattern q(X, A) : truep is then updated. The entire procedure
will be reanalysed from q(X, A) onwards. During a top-down analysis this will be necessary,
since the post-description for one conjunct becomes the pre-description for the next conjunct.
During a bottom-up analysis, this may not be necessary, because Ainrestrict always returns
truep, and individual conjuncts are independent. But when the subsequent conjuncts are
reanalysed, their answers can be found quickly by looking up the answer table; the expense

of the re-analysis will largely depend on the complexity of Acomb.

Conclusion: Judging from these observations, using the top-down framework for perform-
ing bottom-up analysis is not as efficient as a dedicated bottom-up framework would be.
However, the figures in Section 6.7.1 on the cost of determinism analysis show the over-
head is quite acceptable for a simple domain. Further experimentation with more complex
domains would be required to confirm that the overhead is reasonable in general.

4.10 Performance Evaluation

The performance of the analysis framework cannot be measured independently of an abstract
domain. For this reason, we present no performance figures for the framework in this chapter.
Instead, we refer the reader to Section 5.6.1, which evaluates the cost of groundness, sharing
and freeness analyses, and Section 6.7.1, which evaluates the cost of determinism analysis.

Chapter 5

Herbrand Analysis

Three of the best known and most widely studied analyses for CLP languages infer infor-

mation about the groundness, sharing and freeness of program variables.

e Groundness analysis is used to determine whether a variable is ground at a certain

point in a program’s execution.

e Sharing analysis is used to determine when variables may affect each other. During
a program’s execution, two variables share if at some point, they are bound to terms
that share a common variable. Similarly, a non-linear variable is one that shares
with itself, i.e. is bound to a term which contains multiple occurrences of one or more

variables.

e Freeness analysis is used to determine whether a variable is free, i.e. has not been

bound to any non-variable term.

These three analyses are closely linked: groundness and freeness information can improve
sharing analysis, while sharing information can improve both groundness and freeness anal-
yses. Related to freeness analysis is reference chain length analysis, which determines the
length of free variables’ reference chains. For the purpose of optimisation in HAL, we are
only interested in knowing whether free variables have a reference chain length of one. Such
variables have not been aliased with any other, and will be described as lonely. We will refer
to these analyses collectively as Herbrand analyses.

In traditional CLP languages, the programmer provides no information that encompasses
groundness, sharing and freeness information, so any inferred information can be highly
useful. In the strongly-moded language Mercury the programmer provides almost all of
such information; Mercury only supports the use of ground terms. HAL’s weak mode system
supports programs written in a style anywhere between these two extremes. This means
that Herbrand analyses must allow for information provided by the programmer via mode
declarations, which influences them significantly.

This chapter starts by describing common uses of and approaches to inferring groundness,
sharing and freeness information. It then describes how these three analyses are performed
within HAL’s analysis framework, the optimisations enabled by the inferred information,

and concludes with an evaluation of their costs and benefits.

a1

92 CHAPTER 5. HERBRAND ANALYSIS

5.1 Common Uses and Approaches

This section briefly outlines some of the more common uses of groundness, sharing and

freeness information, and some typical approaches to performing the respective analyses.

5.1.1 Groundness

Groundness analysis is arguably the most fundamental and important dataflow analysis for
CLP programs. It can be used for optimising unification and constraint solving. Good
groundness information is also vital for the accuracy of many other analyses, in particular
most kinds of sharing analysis.

Groundness analysis is most commonly performed using one of the two domains Def
and Pos. In these domains, the groundness of variables is abstractly described by definite
and positive boolean functions, respectively, which allow accurate capturing of both definite

groundness information, and groundness dependencies.

5.1.2 Sharing

The term “sharing” encompasses a range of different kinds of information. The different
kinds of sharing information have multiple uses, such as occur-check reduction [57], im-
proving exploitation of independent AND-parallelism [29], compile-time garbage collection
[35, 44], and for improving the accuracy of freeness analysis [38, 4].

Many domains have been proposed for sharing analysis. They typically include ground-
ness, sharing, linearity and even freeness information. The two most influential domains
have been ASub, which contains groundness, pair-sharing, and linearity elements [57]; and
Sharing, which uses set-sharing to encode information about groundness and groundness

dependencies, and sharing and sharing dependencies [28].

5.1.3 Freeness

Freeness information too has several uses, such as improving utilisation of AND-parallelism
[24, 65], improving the accuracy of sharing analysis [47], reducing the overhead of dynamic
scheduling [49], and optimising unification. This last use is how we use freeness analysis
information in HAL. Reference chain length information has also been used for optimising

the execution of Prolog programs [59].

5.2 Term Representation and Herbrand Unification

The most obvious use of Herbrand analysis information for HAL, and the one we will con-
centrate on, is the optimisation of Herbrand constraint solving, i.e. general term unification.
Recall that a variable whose type is an instance of the herbrand type class and has a
“:- herbrand” declaration within its module can be involved in arbitrary unifications. A
general unification operation is provided for these types, but groundness, sharing and free-
ness information can be used to replace this general operation with more specialised and

efficient versions. Before we can understand these optimisations, we must first understand

5.2. TERM REPRESENTATION AND HERBRAND UNIFICATION 53

(RO)

/2 a /2 b /2 c 1

Figure 5.1: Mercury representation of [a, b, c]

HAL’s term representation, how it compares with Mercury’s term representation, and how

it supports Herbrand constraint solving.

5.2.1 Mercury

Mercury’s strong static typing means that the type of every term is known at compile-time.
This allows the use of a very compact term representation. On 32-bit machines with aligned
addressing, the two low bits of a pointer are zero. In Mercury these two bits are used to
store “tag” values. For types with with up to four functors, the tag bits are sufficient to
distinguish them. If the term has any arguments, the remainder of the word is a pointer
to a sequence of contiguous words on the heap that store the term’s arguments; otherwise
the remaining bits are zero. For types with more than four non-constant functors, an extra
word is used to represent the functor. This case occurs rarely in practice and in what follows
we will ignore it for simplicity. True logic variables do not need to be represented, since
Mercury does not allow them. Native types that fit within a word, such as 32-bit integers,
are not tagged.

For example, Figure 5.1 shows the representation of a list [a, b, c], where a, b and ¢
are functors of a single type. The cells labelled with “./2” contain pointers with a tag that
identifies them as pointing to a cons cell; the cells labelled with a, b, ¢ and [] contain tags
representing those functors. The head of the list is pointed to by a tagged pointer in the
register RO; this is how terms are typically passed as arguments to procedures. Note that
the representation is almost identical to that of a linked-list written in C.

Like HAL, Mercury performs normalisation, so only unifications of the form X =Y and
X = f(Y1,...,Y,) must be considered. The two cases for unifications of the form X =Y
are as follows.

e If X is new! and Y is ground, or vice versa (an assignment) the value of the ground

variable is copied into the new variable.

e If both X and Y are ground a specialised procedure that is generated for each type

is used to check if the two terms are equal; we will call this generated procedure

unify_gg.
The three cases for unifications of the form X = f(Y3,...,Y,,) are as follows.
e If X is new and Y7,...,Y,, are ground (a construct), a block of n contiguous cells is

allocated and X is set as a pointer with an appropriate tag to this block.

In Mercury “new” is called “free”.

o4 CHAPTER 5. HERBRAND ANALYSIS

(RO) (x) Wy N\®

/2 VAR| ./2 VAR | ./2 VAR| [

Figure 5.2: HAL representation of [X, Y, Z]

e If X is ground and Y3,...,Y, are all new (a deconstruct), after checking X is of the
correct functor, the values in the contiguous block of n cells it points to are copied
into Y7,...,Y,.

e If all variables are ground, unify_gg is used as for the X =Y case.

See [56] for full details on Mercury’s term representation.

5.2.2 HAL

HAL supports not only basic term manipulation equivalent to Mercury’s, but also more
general term manipulation via the Herbrand solver. Since HAL compiles to Mercury, it
makes considerable sense for its basic term representation to be the same as Mercury’s.
However, we also need a way to distinguish and represent free variables.

This is achieved by reserving one of the four tags used to distinguish the functors of a type
to represent unbound variables (this is why the Mercury programs generated by the HAL
compiler must be compiled in the “reserved tag” grade of the Melbourne Mercury Compiler,
as mentioned in Section 2.4.3). We call this reserved tag the VAR tag. One consequence of
this is that the remaining tag bits can only distinguish types with three or fewer functors
without requiring extra space. Variables are represented using the same technique as the
PARMA system [60]: lonely variables point to themselves, and aliased free variables point
to each other, forming a cycle. When a Herbrand variable is created, it is initialised by the
predicate herbrand_init (calls to which are inserted where necessary during mode analysis)
which allocates a new cell on the heap for the variable, and sets it to point to itself, tagged
with the VAR tag. For example, Figure 5.2 shows HAL’s representation of the list [X, Y,
Z] after Y and Z have been unified. X is lonely and points to itself; Y and Z are aliased and
form a cycle.

The advantage of this variable representation is that when a variable becomes bound to
a term, all the variables in its cycle are updated to point to that term. Thus when a term
becomes ground it is a legitimate Mercury term. Furthermore, even when a term is only
partially bound, the bound part may be able to be manipulated by the efficient Mercury
operations. For example, HAL’s representation of the ground list [a, b, c] is the same as
Mercury’s (Figure 5.1).

The various unification cases that can occur in HAL are implemented by a mix of Mercury
and C code. When applicable, the Mercury unifications are used, e.g. when one argument
is new and the other ground or bound, or when both arguments are ground. Otherwise the

unifications must be handled specially.

5.2. TERM REPRESENTATION AND HERBRAND UNIFICATION 55

First let us consider unifications of the form X =Y. If X is new and Y is not, or vice
versa, Mercury’s assignment works as is. If X and Y are both new, one variable is initialised
by herbrand_init making it o1d, and the previous case applies. If X and Y are both o014,
it is a “true” unification, and is replaced by a call to the Herbrand unification predicate

unify_oo, which is automatically generated for each type t. It is defined as follows:

:- pred unify_oo(t, t).
:- mode unify_oo(oo, 0o) is semidet.
unify_oo(X, Y) :-
(nonvar(X) -> (nonvar(Y) -> unify_val_val(X, Y)
; unify_var_val(Y, X)
)
(nonvar(Y) -> unify_var_val(X, Y)
; unify_var_var (X, Y)
)
).

The predicate nonvar/1 succeeds if the argument is bound, i.e. if it has a non-VAR tag. If
it succeeds, it also dereferences the bound term if necessary (dereferencing will be explained
shortly). The predicate unify_var_var unifies two variables. It first checks that the two
variables are not the same, and then joins the cycles together, trailing the changes. The
predicate unify_var_val unifies a variable and a bound term by modifying all variables in
the cycle to point to the bound term and trailing the changes. Both unify_var_var and

unify_var_val are implemented in C as follows:

unify_var_var (X, Y) { unify_var_val(X, Y) {
QX = *X; QY = xY; QX = X;
while (QX !'= Y && QY !'= X) { do {
if (QX '= X && QY '=Y) { trail (QX);
QX = *QX; QY = *QY; Next = *QX;
} else { *QX = Y;
trail(X); trail(Y); QX = Next;
Tmp = *Y; *Y = *X; *X = Tmp; } while (QX != X)
break; }
}
}
}

The predicate unify_val_val unifies two bound terms; it is defined similarly to unify_gg
except it calls unify_oo on any arguments of the bound terms.

Similarly, there are various cases for unifications of the form X = f(¥3,...,Y,). Some
are handled correctly by Mercury, and some are not. The optimisation of these unifications
is not considered in this thesis, so we omit the details of how they work; the interested reader
can consult [11] for more information.

There is one complication that arises from HAL’s unbound variable representation. Only

heap variables can be placed in an alias cycle — a free variable in a register or on the stack

56 CHAPTER 5. HERBRAND ANALYSIS

R)) Ny \O (RO) (x) (v)

VAR VAR VAR VAR f/1 f/1

N
a)

((b)

Figure 5.3: Bound variable dereferencing

points into a cycle on the heap. When the cycle is bound, an extra pointer dereference is
required to get from the register or stack variable to the term. For example, consider the
pointer in register RO in Figure 5.3(a) pointing into the variable cycle. This situation will
occur if X and Y form a cycle on the heap, and then a new variable in the register RO is
unified with Y. If the variables are unified with the term f(a) pointed to by register R1
we obtain the heap shown in Figure 5.3(b). Accessing the term from RO requires an extra
pointer dereference.

Note that the implementation of dynamic scheduling in HAL is intertwined with Her-
brand representation; delayed goals are “attached” to variable chains, and can be triggered
by various events, such as a variable becoming bound. For efficiency reasons, all the unifica-
tions used have two versions — one for types that support delay, and one for types that do
not. For simplicity, all the following material is targeted towards the non-delay unifications,
although much of it is also applicable to the unifications that support delay.

5.2.3 Optimisation of Herbrand Unifications in HAL

Calls to the general unification procedure unify_oo can be replaced with calls to more
specialised and efficient procedures if we know that one or both arguments are lonely, free,

bound or ground, or that the arguments do not share with each other.

Groundness, boundedness and freeness optimisations: If we know both arguments
of the unification are free, we can avoid the two nonvar/1 tests in unify_oo by replacing it
with unify_var_var. If we know one argument is free and the other bound or ground, we
can replace it with unify_var_val. If we know both arguments are bound, we can replace
it with unify_val_val. If we know one argument is ground and the other is bound, we can
replace unify_oo with unify_val_gnd, which is defined similarly to unify_val_val except
that unify_gnd_old (defined below) is called on any arguments rather than unify_oo,
possibly avoiding further nonvar/1 tests. If we know that both arguments are ground, we
can replace unify_oo with Mercury’s unify_gg.

If we know the freeness/boundedness of only one argument, we can avoid one nonvar/1

test by replacing unify_oo with unify_var_old or unify_val_old, defined as follows:

unify_var_old(X, Y) :-

5.2. TERM REPRESENTATION AND HERBRAND UNIFICATION o7

(nonvar(Y) -> unify_var_val(X, Y)
; unify_var_var (X, Y)

).

unify_val_old(X, Y) :-
(nonvar(Y) -> unify_val_val(X, Y)
; unify_var_val(Y, X)
).

If we know one argument is ground and nothing about the other, we can replace unify_oo

with unify_gnd_old, defined as follows:

unify_gnd_old(X, Y) :-
(nonvar(Y) -> unify_val_gnd(Y, X)
; unify_var_val(Y, X)
).

Sharing optimisations: If both arguments are free and do not share, their cycles cannot
intersect, so we can replace unify_var_var with unify_var_var_noshare, which replaces

the cycle traversal with a single pointer swap, as follows:

unify_var_var_noshare(X, Y) {
trail(X); trail(Y);
Tmp = *Y; *Y = *X; *X = Tmp;
}

If one argument is free, the other has an unknown instantiation, and they do not share,
calls to unify_var_old can be replaced by unify_var_old_noshare, defined identically to
unify_var_old but with the call to unify_var_var replaced by unify_var_var_noshare.

If the freeness/boundedness of the two arguments is not known, but it is known that
they do not share, unify_oo can be replaced with unify_oo_noshare, which is derived from

unify_ooin the same fashion that unify_var_old_noshareis derived from unify_var_old.

Loneliness optimisations: If one argument is lonely, and the other argument is lonely

or free, we can replace unify_oo with unify_vari_var:

unify_varl_var(X, Y) {
trail(X); trail(Y);
Tmp = *Y; *Y = X; *X = Tmp;
}

This is very similar to unify_var_var_noshare above. The difference is in the second
assignment — because X is lonely, we know it points to itself, so we can avoid the dereference
because X == *X.

If one argument is lonely and the other argument is bound or ground, we can replace
unify_oo with unify_varl_val — because the first argument is lonely, we can do a simple

pointer re-assignment, avoiding the loop used in unify_var_val.

o8 CHAPTER 5. HERBRAND ANALYSIS

X\Y lonely free bound ground unknown
lonely varl_var varl_var varl_val varl_val varl_old
free var_var* var_val var_val var_old*
bound val_val wval_gnd val_old
ground gg gnd_old
unknown oo*

Table 5.1: Specialisations of unify_oo

unify_varl_val(X, Y) {
trail (X);
X=Y;

}

If one argument is lonely and nothing is known about the other argument, we can replace

unify_oo with unify_varil_old, which is defined similarly to unify_var_old.

Summary: The possible specialisations of unify_oo are summarised in Table 5.1. Their
names have been shortened by removing the “unify_” prefix. Empty entries are equivalent
to the symmetrical case (although the arguments must be swapped in some cases). Those
marked with a ‘*’ have a sharing and non-sharing version. Note that unify_vari_var and
unify_varl_old are always non-sharing, because a lonely variable cannot share with any-
thing else. Note also that there isnounify_varl_varl,unify_varl_gndorunify_var_gnd,
as they would be identical to unify_varl_var,unify_varl_val and unify_var_val respec-
tively.

To gain full optimisation benefits from the freeness analysis information, the HAL com-
piler performs multi-variant specialisation. A variant is generated for each calling description

with which a procedure is called. See Section 7.4.5 for more details.

5.3 Groundness Analysis in HAL

The domain Pos can be used for highly accurate groundness analysis. It can also be imple-
mented very efficiently using reduced order binary decision diagrams (ROBDDs) [5], directed
acyclic graph structures that compactly represent boolean functions.

However, ROBDDs are best implemented in languages that, unlike HAL, allow explicit
destructive update of data structures. Once HAL bootstraps and compiles through Mercury,
it will be relatively straightforward to use an existing ROBDD implementation written in C,
such as the one described by Schachte in [55], to implement Pos in HAL. In the meantime,
we needed a groundness analyser for the short-term. We had two basic choices: port a
C-based ROBDD implementation to SICStus Prolog, or choose a different representation.
The former would have been quite difficult,? so we instead chose a groundness domain and

representation that was straightforward to implement in HAL and still quite accurate: Def,

2From personal communication with Peter Schachte.

5.3. GROUNDNESS ANALYSIS IN HAL 99

implemented using a dual Blake canonical form (DBCFpef) representation specialised for
Def, which has been implemented previously and found to be at least as fast, if not faster
than ROBDDs [55].

Figure 5.4 shows the lattices for Def and Pos. The difference is that Def has no way of

expressing boolean disjunction. However, in practice the two domains tend to give similar

results.
true true
N N
X<+Y X =Y X+«Y XVY XY
N | X X
X XY Y X X&Y Y
N N7
XAY XAY

Figure 5.4: Two-variable Def and Pos lattices

5.3.1 DBCFpe Representation and Operations

DBCFpef is a simple representation for definite boolean functions. Since the implementation
of Def is only intended to be for the short term, the following material is intended only as
a brief overview of DBCFpes. Please see [55] for a more formal coverage.

Descriptions in DBCFpes have the following form:

/\ (x + M,)

z€ Var

where (z + M) is a clause, M, is a conjunction of variables that does not contain z, and
each = can appear on the left-hand side of more than one clause. For example, the formula:

((and) < c)ANdAN(e+ (fVY))
has this DBCFpes representation:
(@< c)AN(b<sc)A(cé (anD)) A(d < true) A (e < f) A (e < g).

DBCFpes representations are minimal, e.g. (x < y) A (z < (yAz)) is normalised to (z + y).
We will use a function minimise to normalise DBCFpes descriptions. Also, all dependencies
are made explicit, e.g. (z < y) A (y < 2) is written (z < y) A (z < 2) A (y < 2).

The description derived from a unification is found using the following function:

unifypes(X =Y) = (X « V) A (Y « X),
unifyDef(X:f(Ylv--an)) :(X<_ (EA/\Yn))/\(Yl <_X)/\/\(Yn<_X)

60 CHAPTER 5. HERBRAND ANALYSIS

Important DBCFpes operations include the least upper bound (or join, written L), greatest
lower bound (or meet, written M), and restriction. Assume that F' and F' are two formulae
in DBCFpes. The join of F and F' is defined as:

FUF'" = minimise(\ {(z M, AM}) |2+ M, isin F and « < M, is in F'}).
ze Var

The meet of F' and F’ is defined as follows, using the function close which performs the

transitive closure of implication:

F N F'" = minimise(close(F AN F")),
close(F) = if there exists clauses (z < (y A M,)) and (y «+ M,) in F' and
(x < M, A My,)) is not in F' then
close(F A (xz < M) A M,))
else
F.

Because all dependencies are explicit, a variable y can be restricted from F' simply by

removing any clauses that contain it:

Jy.F = /\ {x + M, | yisnot in (z + M,)}.
z€ Var

Note that the implementation uses a modification of DBCFpes for efficiency — each descrip-
tion consists of a term def(G, Deps) in which the definitely ground variables are stored in
the set G, and the groundness dependencies are stored in DBCFper in Deps. This is because
it is frequently necessary to extract all the ground variables from a description (particularly
for sharing and freeness analyses; see Sections 5.4.4 and 5.5.4). This changes the above oper-
ations slightly, but in a straightforward manner; for simplicity we will ignore this difference
in what follows.

5.3.2 Integrating Mode Information

HAL’s weak mode system greatly affects groundness analysis. A great deal of information
is known about groundness from the mode declaration of each procedure. For example, the
groundness answer for the procedure append(in, in, out), is known without requiring
any analysis — all three arguments are ground after the call. This is the only possible (and
thus the best) answer for this procedure. We will describe answers like this that can be
determined without analysis as innate answers. We will also use the symbol T* to indicate
the top-most description allowed with respect to other sources of information, such as mode
declarations or previous analyses. For example, the calling description T* for append (X,
Y, Z) with the mode (in, in, out) is def({X,Y},0); T* for the mode (oo, oo, 00) is
def(0,0). Any calling pattern of the form P : T* for which the answer is innate we will
describe as perfect, or a perfect call. For example, the calling pattern p(X) : def(0,0) for
the procedure p(og) is perfect, whereas the calling pattern p(X) : def ({X},0) is not, since

def ({X},0) # T~

5.3. GROUNDNESS ANALYSIS IN HAL 61

When a perfect external call is encountered during analysis, an answer can be returned
by Aexternal_proc immediately. When a non-perfect calling pattern for an external procedure
with an innate answer is encountered, although an answer could be obtained immediately, a
call must be made to get_ext_answer so that the calling pattern can be registered and an
appropriate variant can be generated during multi-variant specialisation the next time that
module is compiled. This is explained in detail in Section 7.4.

In addition to groundness information from declarations, mode analysis also records
which variables are known to be ground at each program point. This information can also
be used to augment groundness analysis.

To incorporate the extra mode information from procedure mode declarations and pro-

gram point annotations into a groundness analysis we use the following operations.

e add_mode_ground(L, D) looks up the groundness information from mode analysis for
the program point immediately after the literal L, and adds it to D.

e has_innate_answer(H) determines if a predicate has an innate answer, i.e. whether the
output instantiation of every argument of H is known regardless of the calling context.
This is true if every argument has a mode of the form (new -> new), (_ -> ground),
or any other form in which the output instantiation forces the argument to become

ground.?

e is_perfect_call(P : Dp) determines if a calling pattern is perfect, i.e. if its calling pattern
is T* with respect to the groundness information known from the procedure’s mode,

and its answer is innate.

e output-mode_ground(H) returns an answer description based on the mode of a pro-
cedure, i.e. one in which every argument with a mode of the form (_ -> ground)
(or another form with an output instantiation which forces the argument to become

ground) is ground.

We will call Def augmented with groundness information from the program’s modes by the
name Def™r,

5.3.3 Definition of Def

The methods of the abstract_domain instance (the type class was defined in Section 4.3)

for Def™F are given in Figure 5.5.

e Acomb returns the meet of the two descriptions (the variable sets are ignored). Since
groundness information is downwards closed, the two variations of the top%m’ semantics

discussed in Section 3.3.3 are equivalent.

e Aadd first obtains the description of the literal using unifyp.s, and then adds any extra
groundness information known from mode analysis, and returns the meet of the two

descriptions.

3For example (new -> ground_list), where ground_list was defined in Section 2.4.1.

CHAPTER 5. HERBRAND ANALYSIS

Acomb(_, Dl, — Dz)

Adisj(Di, D)

Aif_to_then(D)

Aif_then_else(_, Dsp,, De;)

Aoutrestrict(V, D)

return answer(D; M Dy) Aextend(_, D)
Aadd(L, D) return D
Diit == unifypes(L) Ainitial_guess(H :)

D' := add_mode_ground(L, D)

. if (has_innate_answer(H))
return answer(D' M Dy;)

D 4ps := output_mode_ground(H)
return answer(Daps)
else

return D; U D
! 2 return unreached

Ais_constraint(_)

return D return false

return Adisj(Ds, D) Aca!;rli_slelscDF;{O(_ D)
Aexternal_proc(P : Dp)

foreach variable X in D not in V' if (is_perfect_call(P : Dp))

retfn:lzDEiX.D return output_mode_ground(H)
else
Ainrestrict(V, D) return get_ext_answer(P : Dp)

return Aoutrestrict(V, D)

Figure 5.5: Def™ abstract operations

Adisj returns the join of two descriptions. Groundness is an abstract domain in which
Adisj is a least upper bound, and is thus a candidate for the optimisation described in
Section 4.9.4. Hence it is shown as having two description arguments, rather than a

single description set argument.
Aif_to_then returns D untouched, since we are doing a top-down analysis.

Aif_then_else is found by joining Dy, and D¢;. Its operation can be optimised in the same
manner as Adisj. As mentioned in Section 4.9.4, this means the Abottom operation is

not required for Def™L , and is thus omitted.

Aoutrestrict restricts away the unwanted variables one at a time.
Ainrestrict is the same as Aoutrestrict.

Aextend does not change the description.

Ainitial_guess returns an innate answer immediately, if a procedure has one. If not, it

returns unreached.
Ais_constraint returns false. No procedure calls need to be considered specially.

Acalling_descHO returns the description Dy unchanged — because groundness is down-
wards closed, the information from Dy can be safely used.

Aexternal_proc returns an innate answer immediately, if the calling pattern is perfect.

If not, it looks up an external answer using get_ext_answer, which is defined in

5.4. SHARING ANALYSIS IN HAL 63

Section 7.4.2. Calls to call/n are handled by appropriate entries in the system.reg
file (explained in Chapter 7) that retain all information from the calling pattern; this

is possible because groundness information is downwards closed.

5.4 Sharing Analysis in HAL

The sharing analysis used in the HAL compiler is based on the domain ASub. Descriptions in
the ASub domain contain two components: a groundness description, and a structure sharing
description. This domain was chosen because it is relatively simple, can be implemented
quite efficiently, and fits within the framework more easily than a set-sharing based domain
such as Sharing. Also, since ASub includes linearity information, its accuracy cannot be
improved by freeness information (as opposed to Sharing), which means the sharing and
freeness analyses are decoupled. This made their implementation and comparison easier.
Finally, the structure sharing component of the ASub implementation could be reused in the

future for compile-time garbage collection.

5.4.1 Groundness

Any groundness domain can be used with ASub, and the more accurate the groundness
domain, the more accurate the sharing analysis will be. The obvious candidate is Pos, due
to its accuracy and efficiency, and also for a third reason: it is condensing [38], which means
that a goal-independent analysis will give exactly the same information as a goal-dependent
analysis. For the purposes of ASub, a bottom-up Pos analysis could be performed before
a top-down ASub analysis, and the groundness answers computed for each calling pattern
could be used for the groundness component.

However, since the groundness analyser implemented uses Def™L which is not condens-
ing, the groundness analysis must be combined with the sharing analysis to obtain the

maximum accuracy possible.

5.4.2 Structure Sharing

The structure sharing domain (SS) is one domain for sharing analysis (see e.g [18]). A
description is a set of variable pairs. The pair XY indicates that X and Y may share. The
pair XX indicates that X may be non-linear.

The elements of the domain SS form a complete lattice, ordered by the subset relation
C. The lattice for SS for descriptions with two variables is shown in Figure 5.6.
The interesting abstract operations for the domain SS (those required for ASub) are defined
as follows:

conjss(D, D) = {XY | there is a path from X to Y using arcs
alternately from D and D'},
addss(L, D) = conjss({XY; | 1 <i <n}, D),
where Lis X = f(Y1,...,Y,) or X =Y,
disjss(Dy, D3) = D1 U D,

64 CHAPTER 5. HERBRAND ANALYSIS

{XX,XY,YY}

N

{XX, XY} {XX,YY} {XY,YY}

XX

{XX} {Xv} {(yv}
\ | /

Figure 5.6: Two-variable SS lattice

restrictss(V, D) = {XY | X, Y € VA XY € D},
combsf““(V,D,V',D') = let D" = D\ {XY | X,Y € V')} in D" U news(D",D'),
newss(D, D)= | {UV | (U=XVUXe€D)A(Y =V VYV € D)},
XyeD'
topss(V,D) ={XY | X, Y e V}.

The use of newss in the definition of combst* follows [18]. One problem with the definition
of addgs is that it uses conjss, which has worst-case behaviour that is exponential in the size
of its arguments, and is difficult to program efficiently in practice. To obtain acceptable per-
formance we can take advantage of the fact that the second argument of a call to conjss from
addss always has the form {XY1} or {XY1,..., XY, }, depending on whether the unification
is of the form X =Y; or X = f(V1,...,Y),).

The specialised version of addss uses the operation newss. The newgs operation provides
an approximation to conjss for the cases needed by addgs but it misses some new sharing
pairs, because the abstractions of X =Y; ({XY1}) and X = f(Y1,...,Y,) ({XY1,...,XY,})
do not take into account the information in D. We can avoid missing such non-linear pairs
by adding some extra pairs to these abstractions to take into account the information in D,

leading to this definition of addg;:

addss(X = Vi, D) =
Y Y, if XX eD
let D' = {yihi} in
] otherwise

{XX} ifViVieD
1

let D" = n

0 otherwise
D U newss(D,{XY1}U D' U D"),

addgs(X = f(Y1,...,Y,),D) =
{AB | A,Be{Y,...,.Y,}} XX eD
let D' = in
otherwise
et D — {XX} if3d,j:Y;Y; €D .
0 otherwise

5.4. SHARING ANALYSIS IN HAL 65

D U newss(D, {XY1,...,XY,,} UD' U D").

Note that the definition of addss(X = Y7, D) is equivalent to that for addss(X = f(Y1), D).

5.4.3 Groundness + Structure Sharing = ASub

A description in the ASub domain is a term, asub(G,SS), containing a groundness de-
scription and a structure sharing description. The combination of the groundness and SS
operations is quite straightforward. If a variable is ground, it cannot share with any other
variable; whenever a variable becomes ground, we simply remove any sharing pairs that
involve it. For example, if the SS component of the description at the program point prior
to the unification X = a is { XY}, afterwards it will be §). To do this we will use a function
unshare_ground_vars(SS, G) which removes any ground variables in G from SS.

The only interesting aspect of the combination of the two domains involves the exact
order of the operations; roughly speaking, we want to remove any sharing pairs due to newly
ground variables as soon as possible in order to make the sharing operations work on the
smallest sets possible.

We will call ASub augmented with groundness information from the program’s modes by
the name ASub™%.

5.4.4 Definition of ASub™¢

The methods of the abstract_domain instance for ASub™’ are given in Figure 5.7. For
generality, they are defined in terms of the groundness operations combg, addg, disjq,
restrictg and bottomg — the implementation uses DefL , although any groundness domain

could be used.

e Acomb combines the groundness descriptions, and uses the result to remove any sharing
pairs containing a variable that is now ground from SS; and SS», which are then
combined. Since it uses a specialised comb:?® operation, ASub™¥ is an example of
a domain that uses the second variation of the topf'l semantics discussed in Section

e Aadd follows the same pattern as Acomb, except that addg and addss are used instead

of combg and combsg.

e Adisj simply disjoins the two components piecewise. As in Section 5.3.3, Adisj is a least

upper bound and is shown having two arguments rather than a single set argument.
e Aif_to_then returns D untouched, since we are doing a top-down analysis.

e Aif_then_else is found by joining Dy, and Dg; its operation can be optimised in the
same manner as Adisj. As in Section 5.3.3, this means Abottom is not required and is
thus omitted.

e Aoutrestrict restricts the two components piecewise.

e Ainrestrict is the same as Aoutrestrict.

66

Acomb(V1, asub(Gy, SS1), Va, asub(G2, SS2))
G3 = CombG(‘/ly Gl)‘/Qy G2)
SS3 := unshare_ground_vars(SS;, G3)
SS4 := unshare_ground_vars(SS,, G3)
SSs := combi?*“(Vy, SS3, Vs, SS4)
return answer(asub(Gs, SS5))

Aadd(L, asub(G, SS))
G' = addg (L, G)
SS’ := unshare_ground_vars(SS, G')
SS" = addss(L, SS')

return answer(asub(G',SS"))

Adisj(asub(Gy, SS1), asub(G, SS2))
G = disjg (G, Go)
SS = disjss(SSl,SSg)
return asub(G,SS)

Aif_to_then(D)

return D

Aif_then _else(_, Dy, De;)
return Adisj(Dy, D)

Aoutrestrict(V, asub(G, SS))
G' = restrictq(V, G)
SS' := restrictss(V, SS)
return asub(G',SS")

CHAPTER 5. HERBRAND ANALYSIS

Ainrestrict(V, D)
return Aoutrestrict(V, D)

Aextend(_, D)
return D

Ainitial_guess(H : _)
if (has_innate_answer(H))
G Ans := output_mode_ground(H)
return answer(asub(Gans, 1))
else
return unreached

Ais_constraint(-)
return false

Acalling_descHO (Vi : asub(Gy, -))
SST = topss(Vi)
SS' := unshare_ground_vars(SS+, Gg)
return asub(Gg, SS’)

Aexternal_proc(P : Dp)
if (is_perfect_call(P : Dp))
G Ans := output_mode_ground(H)
return asub(Gans, 0)
else
return get_ext_answer(P : Dp)

Figure 5.7: ASub™’ abstract operations

o Aextend does not change the description.

e Ainitial_guess returns an innate answer immediately, if a procedure has one. If not, it

returns unreached.

e Ais_constraint returns false. No procedure calls need to be considered specially.

o Acalling_descHO starts by finding T for SS over the head variables of the procedure

captured by the closure — any sharing information about the captured variables from

the calling description must be ignored, since it may not still be valid once the closure

is called because SS is upwards closed. Then we remove any variables known to be

ground, which we can do since the groundness component is downwards closed, so any

information we have about groundness will still be valid when the closure is called.

e Aexternal_proc returns an innate answer immediately, if the calling pattern is perfect.

If not, it looks up an external answer using get_ext_answer, which is defined in

Section 7.4.2. Calls to call/n are handled by appropriate entries in the system.reg

file (explained in Chapter 7) that return T over its variables except that groundness

information can be kept (because groundness information is downwards closed).

5.5. FREENESS ANALYSIS IN HAL 67

5.5 Freeness Analysis in HAL

The domain used for freeness analysis in the HAL compiler is Freeness ™" Descriptions in
Freeness'™ have the form free(S, F, L), where S is a description from a sharing domain, F

is a set of definitely free variables, and L is a set of definitely lonely variables.

5.5.1 Sharing

Accurate freeness analysis requires some form of sharing analysis. Any sharing domain could
be used, but the more accurate the sharing analysis, the more accurate the freeness analysis
will be. Our implementation uses ASub™L . Sharing information is necessary for accurate
freeness analysis because when a free variable becomes bound, any variables that share with

it are no longer definitely free.

5.5.2 Freeness and Loneliness

Figure 5.8 shows the freeness and loneliness lattice for two variables that do not share. Each
element in the lattice is a (free set, lonely set) pair. Since any lonely variable is also free,
the set of lonely variables is always a subset of the free variables; the lattice is ordered by

the pairwise superset (2, D) relation.

{X, Y} {X,Y})

Figure 5.8: Two-variable (free set, lonely set) lattice

Note that the properties of freeness and loneliness are only applicable to old variables of
types declared as herbrand (i.e. possibly non-ground variables that have been seen by the
Herbrand constraint solver). They should not be confused with herbrand variables that are
new, which have not been seen by the solver; such variables do not need to be considered in
freeness descriptions, since they are never involved in unify_oo unifications, which is what
we are trying to optimise. For example, consider the following procedure, as seen after the

call to herbrand_init is inserted by the compiler.

:— herbrand list/1.
:— pred p(1ist(T), 1list(T)).

:- mode p(no, oo) is semidet.

68 CHAPTER 5. HERBRAND ANALYSIS

pX, Y) :- ®
herbrand_init(X), @
X =Y. @

Assume that the calling description is ({Y},#) upon entry to the procedure (X is not men-
tioned in the description as it is new). The (free set, lonely set) descriptions for each program

point are as follows:

@ = ({¥},0),
@ = ({x,Y},{x}),
® = ({x, ¥}, 0).

X becomes lonely after the call to herbrand_init, and then loses its loneliness when unified
with Y.

5.5.3 Handling Unifications

The most interesting operation for Freeness™L is Aadd. For unifications of the form X =Y
the action taken depends on the state of the involved variables. Table 5.2 shows the (free
set, lonely set) pair for X and YV after a X = Y unification for all the possible combinations.
The “* indicates that any free variables that share with X must also be removed from the
free set. The “**’ indicates that any free variables that share with either X or Y must be
removed from the free set. Empty entries are equivalent to the symmetric case.

HAL’s mode system does not allow new—new unifications. If one variable is new and the
other is lonely or free, the new variable also becomes lonely or free. It may sound strange
for a variable to be lonely after it has been involved in a unification; however, recall that a
unification involving a new variable is an assignment, and the content of the non-new variable
is copied into the new variable. This results in the variable which was new pointing to the
lonely variable, which has not been touched and is thus still lonely.

If both variables are lonely or free, they both end up free. If one variable is lonely or free
and the other is not, the lonely/free variable no longer is, nor are any variables with which
it shares (although recall that a lonely variable cannot share with anything else). If neither
variable is free, we must unfree any variables that share with either of them.

For unifications of the form X = f(Y") the possible results are shown in Table 5.3. This
table can be extended to unifications of the form X = f(Y1,...,Y,) in the obvious manner.
The “*” and “**” annotations have the same meaning as for Table 5.2.

X is bound by an X = f(Y) unification, and thus is never free or lonely afterwards. If
X shares with other free variables (possible if it is not new or lonely), they are also removed
from the free set. Y is never lonely afterwards? and is only free afterwards if it was free or
lonely beforehand, and X was new, free or lonely.

Note that neither of these tables mention the sharing component of the Freeness™F

description, which must be computed separately.

41f X is new, lonely or free the code for an X = f(Y') unification could be generated in a way that
preserves Y’s loneliness, but currently it is not.

5.5. FREENESS ANALYSIS IN HAL 69

X\Y | new lonely free other
new | — (0,{X)Y}) ({X,Y}L0) (0,0)
lonely {X,Y},0) ({X,Y}0) (0,0)
free (X, Y}L0) (0,0)*
other (0, 0)**

Table 5.2: X =Y for Freeness™"

X\Y | new lonely free other
new (0,0) ({Y'},0) {Y},0) (0,0
lonely | (0,0) {Y'},0) (Y10 (0,0
free @,0* ({Y}0)* ({Y}0)* (0,0)*
other | (B,0)* (0,0)* (0,0)** (0, 0)**

Table 5.3: X = f(Y) for Freeness™*

5.5.4 Definition of Freeness™"

The methods of the abstract_domain instance for Freeness™' are given in Figure 5.9. For
generality, they are defined in terms of the sharing operations combs, adds, disjs, restrictg,
tops, bottomg and calling_descHOs — the implementation uses ASubML, although any
sharing domain could be used. The function unfree_sharers(F,V,S) removes from the free
set F' any variables that share (according to S) with any variables in V. The function
output-mode_ground is redefined from earlier to return a sharing description containing the

variables that are definitely ground upon procedure exit.

e Acomb first combines the sharing descriptions. To find the free and lonely variables,
it removes all variables of the call from the pre-descriptions, and then adds back those
variables known to still be lonely or ground after the call. If any of the call variables
are not free after the call, any variables they shared with before the call must be

removed from the free set, as they may now be bound.

Freeness'™ does not directly use a specialised Acomb operation for the freeness and
loneliness components, although the sharing Acomb operation may be specialised.

e Aadd treats one “constraint” specially — the argument of a call to herbrand_init is
added to the lonely set. Otherwise, unifications are handled as described in Table 5.2
and Table 5.3.

e Adisj first disjoins the sharing components. It then disjoins the free and lonely sets
using intersection. As in Sections 5.3.3 and 5.4.4, Adisj is a least upper bound, and is

shown having two arguments rather than a single set argument.
e Aif_to_then returns D untouched, since we are doing a top-down analysis.

e Aif_then_else is found by joining Dy, and D.y; its operation can be optimised in the same
manner as Adisj. As in Sections 5.3.3 and 5.4.4, this means Abottom is not required

and is thus omitted.

70

Acomb(V1, free(Sy, Fi, L1), Va, free(Sz, Fy, Ly))

Aadd(Lit, free(S, F, L))

Adisj(free(Sl, Fl, Ll),free(Sg, FQ, Lg))

CHAPTER 5. HERBRAND ANALYSIS

Ainrestrict(V, D)

S5 := combs(V1, 51, V2, 52) return Aoutrestrict(V, D)

F3 = (Fl \Vz) U F2
Ly := (L1 \V2) U L Aextend(V, D)
F, := unfree_sharers(F3, V5 \ Fz,S1)
return answer(free(Ss, Fu, L3))

return D

Ainitial_guess(H : .)
if (has_innate_answer(H))
S Ans := output_mode_ground(H)
return answer(free(Sans, 0, 0))
else
return unreached

if (Lit = literal(herbrand_init(X))
return free(S,F,L U {X})

else
% See Tables 5.2 and 5.3

Ais_constraint(A)

S3 := disjs (S1,52) if (A = herbrand_init(.))
F=FNFE return true
L3:=LiNLs else
return free(Ss, F3, L3) return false

Aif_to_then(D) Acalling_descHO(Vy; : free(SH, _,-))
return D S'" := calling_descHOs Vi, Sg)

Aif_then _else(_, Dy, De;)

Aoutrestrict(V, free(S, F, L))

return free(S',0,0)

return Adisj(Dis, Dei) Aexternal_proc(P : Dp)

if (is_perfect_call(P : Dp))
S Ans := output_mode_ground(H)
return free(Sans, 0,)

else
return get_ext_answer(P : Dp)

S’ := restricts(V, S)
F':=VNF
L':=vnL

return free(S', F', L")

Figure 5.9: Freeness™ abstract operations

Aoutrestrict restricts the three components piecewise.
Ainrestrict is the same as Aoutrestrict.
Aextend does not change the description.

Ainitial_guess returns an innate answer immediately, if a procedure has one. If not, it

returns unreached.

Ais_constraint only returns ¢rue if the call is to herbrand_init — the only “constraint”
considered specially.

Acalling_descHO starts by finding the appropriate description for the sharing compo-
nent. The freeness and loneliness components must be returned as the empty set,
because Freeness™’ is an upwards closed domain, so no information can be safely

retained.

Aexternal_proc returns an innate answer immediately, if the calling pattern is perfect.
If not, it looks up an external answer using get_ext_answer, which is defined in

Section 7.4.2. Calls to call/n are handled by appropriate entries in the system.reg

5.6. EXPERIMENTAL ANALYSIS EVALUATION 71

| Module | Preds Lits| G S F Al(F) [Prop(F) |
fast_mu 8 41 | 920 1930 2170 7030 30.9%
hanoidiff 6 8 30 60 90 1150 8%
gsortdiff 11 22 90 110 140 11140 1.3%
zebra 7 25| 130 240 270 3590 7.5%
icomp 30 116 | 1160 4220 5910 12940 45.6%
term 121 502 | 1620 1830 2080 32830 6.3%
chremp 86 870 | 2300 2580 2760 60250 4.6%
term2body 119 994 | 2720 3850 6100 53520 11.4%
mode_analysis_framework 122 1490 | 3710 4500 4920 69910 7.0%

Table 5.4: Cost of Freeness™" analysis (ms)

file (explained in Chapter 7) that return T over its variables except that groundness

information can be kept (because groundness information is downwards closed).

5.6 Experimental Analysis Evaluation

This section evaluates HAL’s groundness, sharing and freeness analyses by considering the
time taken during compilation to perform each analysis, and the performance improvements

for programs optimised using the obtained information.

5.6.1 Cost of Analysis

To determine the compile-time cost of groundness, sharing and freeness analysis, a number
of modules of varying sizes were tested. These were: four small Prolog benchmarks fast_mu,
hanoidiff, gsortdiff and zebra (also used to determine the effect of the Herbrand op-
timisations; see Section 5.6.2); one slightly larger program icomp; and four large modules
from the HAL compiler that use Herbrand constraint solving, term, term2body, chrcmp and
mode_analysis_framework. The tests were performed on an Intel Pentium II-400MHz with
384MB of RAM, running Red Hat Linux (version 6.0, kernel version 2.2).

As mentioned in Section 2.4.3, the HAL compiler is currently executed through SIC-
Stus Prolog, as it has not yet bootstrapped. These experiments used SICStus version
3.8.6 (compact code) with garbage collection on. Because the analysis framework uses the
abstract_domain type class, and SICStus does not support type classes, it is currently only
possible to use one abstract domain within the framework at a time. This means the anal-
ysis times given do not include the determinism analysis phase, since it is also implemented
within the analysis framework (see Chapter 6).

Each module was compiled five times in a row, and the fastest time recorded. All times
are SICStus run-times, measured in milliseconds. In all cases, the variation over the five
compilations was less than 1%.

Table 5.4 shows the cost of analysing these modules. Columns two and three give the
number of predicates and literals (before normalisation) in each module. Columns four, five
and six give the analysis times for Defm, ASub™L and Freeness™" respectively. Column

72 CHAPTER 5. HERBRAND ANALYSIS

seven gives the overall compilation time, including Freeness™" analysis, and column eight
gives the proportion of compilation time taken up by Freeness™" analysis (i.e. column six
divided by column seven). Note that the overall compilation time is only the time taken by
the HAL compiler; to run the programs, the generated Mercury code must then be compiled
by the Mercury compiler.

Since Def™ is incorporated into ASub™r , which is incorporated into Freenessm, it is
not surprising to see that the analysis times increase without exception when moving from
Def t6 ASub™’ to Freeness™r. Generally, the ASub™L times are roughly 1.5-2 times
longer than the Def™L times, and the Freeness™ times are slightly longer than the ASub™L
times.

Of the four benchmarks, fast_mu uses old terms the most, and pays the price in anal-
ysis time. A disproportionately long mode analysis phase® skews the result downwards for
gsortdiff. Of all the tested modules, icomp uses old terms the most — almost all its
predicate arguments are oo — and it easily has the highest analysis time. Among the four
compiler modules, the analysis times reflect quite accurately the proportion of old terms
used — only one predicate in chrcmp has oo and no arguments, term2body uses them in a
number of places, and term and mode_analysis_framework are in between.

The obvious conclusion from these figures is that freeness analysis is not too expensive
when Herbrand constraint solving is used sparingly, but that the cost jumps quite quickly as
old terms are used more frequently, providing an argument in favour of using ground terms
wherever possible.

It should be noted that the compilation times for the HAL compiler are currently quite
high. Most of this time is taken up by reading and pre-processing the source file and interface
files, and performing type and mode analysis. However, Mercury programs are much faster
than SICStus programs (see [11, 56] for figures); once the compiler bootstraps and runs as a
HAL/Mercury executable rather than a SICStus program, we conservatively expect it will
run 2-3 times faster, giving compilation times similar to those of the Mercury compiler when
compiling similarly sized Mercury programs. The relative cost of the Herbrand analyses may

change when this happens, although the difference is likely to be small.

5.6.2 Effect of Optimisations

This section evaluates the potential benefits of the Herbrand optimisations described in
Section 5.2.3 by measuring the difference in cost between unify_oo and the specialised
unifications. It then measures the actual benefits on a small number of benchmarks.

All the experiments in this section were performed on the same machine as those in
Section 5.6.1. The tested programs were compiled by the Melbourne Mercury Compiler
(July 2001 development version), and run with garbage collection turned off.5 Each program
was executed ten times, and the fastest elapsed time (user + system, reported by GNU time

version 1.7) was recorded. In all cases, the maximum variation over each program’s execution

5This is due to the presence of a large constant list, which is normalised into many simple unifications,
which the current mode analysis algorithm does not handle very well.
6With garbage collection on, the times are much less consistent.

5.6. EXPERIMENTAL ANALYSIS EVALUATION 73
times was 10 milliseconds.

Relative unification speeds: The first experiments performed were intended to deter-
mine how much faster than unify_oo the specialised unifications are, and thus identify the
maximum benefits the Herbrand optimisations from Section 5.2.3 would allow. To do this,
a program was written that performed a large number of identical unifications many times.

Using this program, four tests were performed.
1. 1,000,000 unifications of two lonely variables.
2. 1,000,000 unifications of a lonely variable with a ground term.

3. 250,000 unifications of two free variables, where each variable was part of a ten variable

cycle chain, and the two cycles did not share.

4. 250,000 unifications of two ground terms of the form [yes, no, yes, no, yes, no,

yes, no, yes, nol, where yes and no are the functors of the built-in yesno type.

Every unification from Table 5.1 was tested by one or more of these tests. For example,
the unifications suitable for the lonely—ground unification were tested with the following

predicate:

:- pred loop_LG(int::in, 1ist(T)::00) is semidet <= herbrand(T).
loop_LG(N, Y) :-
(N=0 ->

true

<unify>(X,Y),

N1 =N-1,

loop_LG(N1, Y)
).

The argument Y used was a ground list. The generated Mercury code was hand-edited for
each run so that <unify> was set to, in turn: unify_oo, unify_var_old, unify_var_val,
unify_varl_old, unify_varl_val, unify_val_old, and unify_gnd_old (the arguments
were swapped for the last two). Predicates similar to Loop_LG were used for the other three
tests. An extra run was performed for each test in which <unify> was set to null, an empty
C function taking two arguments; this was used to determine the cost of the loop operations.
By subtracting this figure from each time result, we obtained a measure of the time taken
by the unifications alone.

The results are summarised in Tables 5.5-5.8. In each table, column one gives the
unification used (or null). Column two gives each run’s execution time. Column three
gives the execution time minus the time of the loop operations (i.e. minus the T value
for null). Column four gives the improvement factor over the unspecialised unification
unify_oo, where applicable. All times are in milliseconds.

Table 5.5 shows the times for 1,000,000 lonely—lonely unifications. The cost of the loop
itself (120 ms) included allocating and initialising two lonely variables for each unification.

The interesting results were as follows.

74 CHAPTER 5. HERBRAND ANALYSIS

- - -
Unlliilcatlon 121(; T0 Fetr Tolfication = e
- . null 160 0 ~
00 740 620 1 650 490 .
var_old 580 460 1.3 0o

var_var 500 380].6 Var_old 430 270 18
oo_noshare 730 610 1.0 var_val 390 230 2.1

varl_old 420 260 1.9
varl_val 380 220 2.2
val_old 500 340 1.4
gnd_old 540 380 1.3

var_old_noshare || 570 450 1.4
var_var_noshare || 490 370 1.7
varl_old 560 440 1.4
varl_var 480 360 1.7

Table 5.6: 1,000,000 lonely—ground

Table 5.5: 1,000,000 lonely—lonely unifica- unifications (ms)

tions (ms)

Unification T T'| Fctr Unification T T' | Fctr
null 1870 0 - null 20 0 -
00 2090 220 1 00 1650 1630 1
var_old 2050 180 1.2 val_old 1630 1610 | 1.01
var_var 2030 160 1.4 val_val 1600 1580 | 1.03
oo_noshare 2020 150 1.5 gnd_old 1260 1240 | 1.31
var_old_noshare || 1980 110 2.0 val_gnd 1150 1130 | 1.44
var_var_noshare || 1960 90 24 gg 340 320 | 5.09

Table 5.7: 250,000 free—free unifications Table 5.8: 250,000 ground—ground
(ms) unifications (ms)

e Removing one or both nonvar/1 tests made the biggest difference, as shown by the dif-
ference between unify_oo (two tests), unify_var_old (one test) and unify_var_var
(zero tests). Avoiding the first test saved 160 ms, avoiding the second saved only 80 ms.
The corresponding differences between unify_oo_noshare, unify_var_old_noshare
and unify_var_var_noshare were also 160 ms and 80 ms. The difference between
unify_varl_old and unify_varil_var (one test avoided) was 80 ms. In all cases, the

avoided nonvar/1 tests in the condition failed, so the else case was executed.

e The noshare version of each unification is marginally (10 ms) faster than the normal
version, which demonstrates that the single cycle traversal step performed by the
normal versions for lonely variables is not expensive. For the same reason, both vari

unifications are only slightly (20 ms) faster than their var counterparts.

e The unification unify_varl_var is just (10 ms) faster than unify_var_var_noshare,
which shows the effect of the single pointer dereference avoided by unify_varl_var,

which was explained in Section 5.2.3.

Table 5.6 shows the times for 1,000,000 lonely—ground unifications. The arguments of
unify_val_old and unify_gnd_old were swapped so they were a ground-lonely unifica-
tion. The pertinent results were as follows.

e The difference between the entries for unify_oo, unify_var_old and unify_var_val
show that avoiding the first nonvar/1 test (which failed) saved 220 ms, whereas avoid-

ing the second (which succeeded) saved only 40 ms. For unify_oo, unify_val_old

5.6. EXPERIMENTAL ANALYSIS EVALUATION 75

and unify_var_val, avoiding the first test (which succeeded) saved 150 ms, avoiding
the second (which failed) saved 110 ms. The difference between unify_vari_old and

unify_varl_val (one successful test avoided) was only 40 ms.

e The unifications unify_varl_old and unify_varl_val were each only 10 ms faster
than unify_var_old and unify_var_val respectively. This confirms that the sin-
gle cycle traversal step performed by unify_var_old and unify_var_val for lonely

variables is not expensive.

e The unifications unify_val_old and unify_gnd_old took quite different times (40
ms difference), which is surprising since they do exactly the same thing when the old
argument is a variable (the nonvar/1 test fails, then unify_var_val is called). There

is no obvious reason for this difference.

Table 5.7 shows the times for 250,000 free—free unifications, where each free variable is in
a cycle of length ten, and the two cycles do not share. The cost of the loop itself was
quite high for this test (1870 ms) because twenty variables were allocated and initialised by

herbrand_init for each unification. The notable results were as follows.

e Looking at unify_oo, unify_var_old and unify_var_var, again we see that avoiding
the nonvar/1 tests makes quite a difference — avoiding the first test saved 40 ms,
avoiding the second test saved 20 ms (the times are smaller because only 250,000
unifications were performed for this test). The corresponding savings for the noshare

versions were also 40 and 20 ms. All the avoided nonvar/1 tests were ones that failed.

e The noshare unifications which avoid the unnecessary traversal of variable cycles are
much faster than their normal counterparts (all by 70 ms). Admittedly, the noshare
benefit is likely to be much less in practice; cycle lengths greater than one were rare
in the programs tested in [11], and both cycles must be large for the saving to be

significant.

Table 5.8 shows the times for unifying 250,000 ground—ground lists of length ten. The cost
of the loop itself was very small compared to the other tests because no variables needed to

be initialised. The salient results were as follows.

e The difference between unify_oo, unify_val_old and unify_val_val show that
avoiding the first nonvar/1 test saved 20 ms, whereas avoiding the second saved 30 ms
(again the times are smaller because only 250,000 unifications were performed). Both

of the avoided nonvar/1 tests were ones that succeeded.

e The unifications in which one argument was known to be ground are clearly faster.

This is because multiple nonvar/1 tests can be avoided.

e Reverting to Mercury’s unify_gg when both arguments were ground made a huge
difference. This is primarily because when comparing two lists of ten elements that
are known to be ground, 42 nonvar/1 tests can be avoided (for each argument, 11 for
the list backbone and 10 for the elements). If the terms were larger, the difference

would be even greater.

76 CHAPTER 5. HERBRAND ANALYSIS

Unification T T | Fctr Unification T T | Fctr
null 120 0 - null 160 0 -
00 740 620 1 00 650 490 1
var_var 500 380 1.6 var_val 390 230 2.1
var_var_notrail 230 110 5.6 var_val_notrail 240 80 6.1
varl_var 480 360 1.7 varl_val 380 220 2.2
varl_var_notrail || 200 80 7.8 varl_val_notrail || 230 70 7.0

Table 5.9: 1,000,000 lonely-lonely Table 5.10: 1,000,000 lonely—ground
notrail unifications (ms) notrail unifications (ms)

e The improvement from unify_gnd_old to unify_gg is larger than from unify_oo to
unify_gnd_old. Yet each specialised unification avoids the same number of nonvar/1
tests. The likely reason for the disparity is that several coercions (which were not
shown in Section 5.2.3) are required for Mercury’s mode analysis to believe that the

sub-lists are bound at each unification step; they are not required for unify_gg.

It is also worthwhile to compare the relative speeds of unifications between tables. We see
from Tables 5.5 and 5.6 that unify_var_varis 150 ms slower than unify_var_val when the
first argument is lonely, and that unify_varil_var is 140 ms slower than unify_varil_val.
Given that variable cycle traversal is cheap, the likely cause of the differences is that
unify_var_var and unify_varl_var both trail two variables, whereas unify_var_val and
unify_varl_val only trail one. To confirm this, we repeated the lonely—lonely test for
unify_var_var and unify_varil_var, and the lonely—ground test for unify_var_val and
unify_varl_val, but this time without trailing the variables.

Table 5.9 shows the times for 1,000,000 lonely—lonely unifications without trailing. Only
the notrail unification results are new — the others are reproduced from Table 5.5. Remov-
ing both calls to trail/1 made a large improvement of 270 and 280 ms to unify_var_var
and unify_varl_var. This makes unify_var_var_notrail an impressive 3.5 times faster
than unify_var_var,and unify_varl_var_notrail 4.5 times faster than unify_vari_var.

Table 5.10 shows the times for 1,000,000 lonely—ground unifications without trailing.
Again, only the notrail unification results are new, the others being reproduced from Ta-
ble 5.6. Removing the one trail/1 call from unify_var_val and unify_vari_val saved
150 ms in both cases. This was about half the saving made by removing two variable
trailings from unify_var_var and unify_varl_var, showing the improvement to be con-
sistent. We see that unify_var_val_notrail is 2.9 times faster than unify_var_val, and
unify_varl_val_notrail is 3.1 times faster than unify_varl_val.

In practice, when garbage collection is on, the notrail versions would be even faster
relative to the normal versions because they require no memory for trailing the variables.

Tables 5.9 and 5.10 show that all four notrail unifications take quite similar times (70—
110 ms), which makes sense since they have all been reduced to a handful of assignments
and tests. There is very little scope for further optimisation of these unifications; indeed,
unify_varl_val_notrail performs only a single C assignment.

Variable trailing is only necessary if a unification can be backtracked over. An analysis

phase could be implemented in order to identify which unifications do not need their variables

5.6. EXPERIMENTAL ANALYSIS EVALUATION 7

trailed. This could be done straightforwardly using sharing and determinism (see Chapter
6) information.
We are now in a position to draw our conclusions. The results in Tables 5.5-5.10 show

there are five main areas of benefit from these specialisations, of increasing worth.

1. The varl unifications provide only the slightest of improvements over the var uni-
fications, especially unify_var_var_noshare. The difference is 10 ms per 1,000,000

unifications.

2. If both arguments are variables in long chains, unify_var_var_noshare is much faster
than unify_var_var — almost twice as fast for chains of length ten — but that’s rare
and otherwise the difference is very small (e.g. 10 ms per 1,000,000 unifications if either

argument is lonely).

3. Avoiding nonvar/1 tests makes quite a difference, although the pay-off varies wildly.
The cost of nonvar/1 is 40-220 ms for 1,000,000 tests, with the average being around
110 ms. Avoiding tests that fail seems to save more time (80-220 ms, average about
125 ms for 1,000,000) than avoiding tests that succeed (40-150 ms, average about 85
ms for 1,000,000).

4. Avoiding unnecessary variable trailing makes a consistent difference of 135-150 ms per
1,000,000 variables trailed; the tested notrail unifications were 2.9-4.5 times faster
than unify_oo. This indicates that an analysis that identifies when variable trailing

can be avoided could provide substantial improvements.

5. Using Mercury’s unify_gg where possible can make a big difference; particularly for
large terms. This shows that when programming with performance in mind, ground

terms should be used where possible.

Note that these are not the only optimisations enabled by Herbrand information; other

potential optimisations are covered briefly in Section 5.7.

Benchmarks: Having carefully analysed the relative costs of all the different unifications,
we are ready to examine the effect of these Herbrand optimisations on non-manufactured
benchmark programs. Only a small number of modest benchmarks were analysed to evaluate
the effect of the Herbrand optimisations on HAL programs. There are two main reasons for
this.

1. At the time of writing, the HAL compiler’s code generator was being extensively
rewritten. The old code generator did not produce satisfactory code with respect to
Herbrand optimisations. To work around this, the generated Mercury files were hand-
edited somewhat to be as optimised as an improved code generator would make them.

This meant that benchmarks tested had to be quite small.

2. As we have seen, Mercury’s (and therefore HAL’s) basic term manipulations are ex-
tremely fast. Therefore programs written with performance in mind should only use

Herbrand constraint solving when the basic term manipulations cannot be used. Only

78 CHAPTER 5. HERBRAND ANALYSIS

| Module | Preds Lits | oo calls | NoOpt Opt | Factor |
fast_mu 5 30 | 2,980,000 1930 1780 1.08
hanoidiff 2 6 | 2,620,000 4840 4240 1.14
gsortdiff 3 10 25,000 1190 1170 1.02
zebra 5 20 118,000 140 140 1.00

Table 5.11: Effect of Freeness™ analysis (ms)

programs that use true Herbrand constraint solving can benefit from Herbrand opti-

misations, and surprisingly few Prolog programs fall into this category.

Finding programs that used Herbrand constraint solving and were small enough that the
generated code could be hand-edited was quite difficult. However, despite the modest num-
ber and size of the benchmarks, we believe the results still provide an insight into what kind
of performance benefits Herbrand optimisation will provide for real programs.

The benchmarks chosen were four small Prolog benchmarks that used Herbrand con-
straint solving (those used in Section 5.6.1), translated into HAL by adding the necessary
types and declarations. The experiments were performed under the same conditions as the
unification experiments. The time reported was the best of five consecutive runs, and the
maximum variation in times was 10 ms.

Table 5.11 shows the results of the Herbrand optimisations. Columns two and three give
the number of predicates and literals (before normalisation) in each benchmark. Column
three gives the number of run-time calls made to unify_oo in each benchmark. Columns
four and five give the execution times for the un-optimised and optimised benchmarks re-
spectively. Column five gives the improvement factor.

We saw in the first part of this section that specialised unifications ranged from 1.0-2.4
times faster than unify_oo, except for unify_gg which was substantially faster than that.
For programs that use logic variables (and thus cannot use unify_gg), the improvement will
depend on which unifications can be substituted for unify_oo, and what proportion of the
un-optimised program’s execution time is taken up by calls to unify_oo.

Of the benchmarks, hanoidiff showed the greatest improvement, of 14%. It contained
two calls to unify_oo which were replaced by unify_var_old and unify_var_val. If
boundedness information from mode analysis was exploited (it currently is not, but could
be quite easily), the unify_var_old could be replaced by another unify_var_val, in which
case the improvement rises to 18%. The improvement for fast_mu arises from replacing
unify_oo calls with unify_gg. The improvement for gsortdiff arises from replacing two
unify_oo calls with unify_var_val; however the number of calls is too small to make much
difference. In zebra, some unify_oo calls are replaced with unify_oo_noshare, and others

are replaced with unify_var_val; again the number of calls is too small to make a difference.

5.7 Conclusion

We have seen that the cost of Herbrand analysis is fairly modest for modules that use

Herbrand constraint solving sparingly, with freeness analysis accounting for 1.3-11.4% of

5.7. CONCLUSION 79

compilation time of such modules, with around 5-8% being common. However, analysis
times jump if old terms are used frequently, approaching 50% of compilation time.

We have also seen that unify_oo can be replaced with more specialised unifications
using information from Herbrand analysis, and we carefully compared their relative speeds
to determine which parts of unification are expensive and which are not. The experimental
results showed that avoiding nonvar/1 tests was a significant source of improvement. They
also demonstrated that an analysis that determines when variable trailing can be avoided
(using sharing and determinism analysis information) could further improve performance,
and is worth implementing. Perhaps most importantly, they showed that true Herbrand
constraint solving is much more expensive than HAL’s basic manipulation of new and ground
terms.

The benefit of the studied optimisations depends on how heavily a program uses Herbrand
constraint solving; some small benchmarks that used Herbrand constraint solving intensively
run up to 14% faster when optimised.

The experiments performed do not provide a convincing argument of the value of Her-
brand analysis. However, one important point to consider is that it can be used for more
sophisticated optimisations other than simply replacing calls to unify_oo. Work has be-
gun on integrating the analysis information into HAL’s code generator to further optimise
Herbrand constraint solving. Also, the analysis information could be used to improve the
modes of procedures — for example by replacing ground old arguments with ground, and
lonely old arguments with new, and then re-running mode analysis on the new variants to
obtain optimal code.

Having examined Herbrand constraint solving in such detail, our primary conclusion is
somewhat contrarious — if performance is an important consideration, Herbrand constraint
solving should be avoided where possible, since it is considerably slower than HAL’s basic

term manipulation.

80

CHAPTER 5. HERBRAND ANALYSIS

Chapter 6

Determinism Analysis

A defining feature of CLP programs is that they can exhibit non-determinism: a predicate
may return one or more solutions, or none at all. This feature allows quite powerful program-
ming techniques to be used. However, there are two main problems with the unrestricted

use of non-determinism.

1. Correctness: In practice, the majority of predicates in typical CLP programs are
deterministic, or at least are intended to be deterministic. Unfortunately, it is very
easy to unintentionally write predicates that can fail. If a predicate that should always
succeed actually fails, it can be very difficult to determine where the failure occurred.
Furthermore, if a query to a program that can legitimately fail does so, it can be even
more difficult to know if the program failed “for the right reason”. It is also possible
to unintentionally write a program that returns multiple solutions, or the same answer

multiple times.

2. Efficiency: Non-determinism has significant performance costs associated with it. For
that reason, CLP programmers devote much effort to ensure that they do not acciden-
tally leave behind choice-points. In particular, the infamous cut operator (!) is often
used to prune potential backtracking. Unfortunately, cut is notoriously difficult to use
correctly, and is the source of many subtle and not-so-subtle bugs in CLP programs.
Furthermore, most CLP languages only provide one execution mechanism, so deter-
ministic predicates are executed in the same manner as non-deterministic predicates,

which adds unnecessary overhead.

This chapter describes how determinism declarations work within the language, and how
bottom-up determinism inference is performed within HAL’s analysis framework. Finally,
it evaluates the cost and benefits of determinism analysis, and discusses how HAL’s deter-

minism system solves the above two problems.

6.1 HAL’s Determinism System

Each procedure in a HAL program may be annotated with a determinism declaration. These

declarations indicate whether the procedure can fail before producing its first solution, and

81

82 CHAPTER 6. DETERMINISM ANALYSIS

what is the maximum number of solutions it might return (zero, one, or more than one).
Determinism declarations are semi-optional in the sense that procedures exported from a
module are required to have a determinism declaration.! This is primarily for software en-
gineering purposes: type, mode and determinism declarations together provide an excellent
form of documentation for exported procedures. It also simplifies inter-module analysis; see
Section 6.4.1 for an explanation.

Determinism declarations are checked by the compiler. If the compiler cannot prove
a determinism declaration provided by the programmer is correct, it issues an error or
warning. The problem of optimal determinism inference is undecidable in general, as solving
it would require solving the halting problem [62]. As a result, any determinism analysis will
sometimes obtain an inaccurate (but not incorrect) answer for a procedure. However, the
algorithm used works extremely well in practice. The algorithm is conservative: it never
underestimates a procedure’s maximum number of solutions, and it never incorrectly reports
that a procedure cannot fail.

HAL’s determinism system is almost identical to that of Mercury. Thus, the following
discussion regarding determinism declarations, switch detection, and common subexpression
elimination has much in common with the description of the Mercury determinism system
in [22].

6.2 The Determinism Domain
There are two characteristics that decide the determinism of a HAL procedure.

1. Whether the procedure can fail before producing a solution.

2. The maximum number of solutions produced by the procedure: zero, one, or many.
Combining these two characteristics gives us the six determinism categories, as follows.

e If a procedure has exactly one solution, it is deterministic (det).

e If a procedure has at most one solution, but can fail, it is semi-deterministic (semidet).

e If a procedure has at least one solution, but possibly more, it is multi-deterministic
(multi).

e If a procedure might have more than one solution, and can fail, it is nondeterministic
(nondet).

e If a procedure always fails, it has the determinism failure.

e If a procedure never fails or succeeds (i.e. it infinitely loops, always aborts, or always

throws an exception) it has the determinism erroneous.

IThe same is true for type and mode declarations.

6.2. THE DETERMINISM DOMAIN 83

The last two are rarely used, although the system predicate fail/0 has a determinism
of failure, and the system predicate error/1 (used to abort) and the library predicate
throw/1 (used to throw an exception) are both erroneous. The categories are summarised
in Table 6.1.

Max. solns. | 0 1 >1
Cannot fail | erroneous det multi
Can fail failure semidet nondet

Table 6.1: The determinism categories

Note that the statements above about the number of solutions for the non-erroneous values
assume that control returns to the caller. The determinism values do allow for control not
to return to the caller of a non-erroneous procedure; for example, a det procedure may
return exactly one solution, or abort, throw an exception or infinitely loop.

The determinism categories form a complete lattice, shown in Figure 6.1. Broadly speak-

ing, the determinisms become less restrictive as we move up the lattice.

nondet
multi semidet
det failure

erroneous

Figure 6.1: Determinism lattice

Determinism declarations are attached to mode declarations; different procedures of a pred-
icate can have different determinisms. For example, consider the following four procedures

of append/3:

:— pred append(list(T), list(T), list(T)).
:- mode append(in, in, out) is det.

:- mode append(in, in, in) is semidet.
:- mode append(out, out, in) is multi.

:- mode append(oo, o0, ©00) 1is nondet.

The first three determinism declarations follow straightforwardly from the modes: concate-
nating two lists provides exactly one answer; checking if two lists concatenated equal a third
will either succeed or fail; and a list can be broken into two parts in one or more ways. The

fourth mode subsumes the other three cases, and thus can fail or succeed one or more times.

84 CHAPTER 6. DETERMINISM ANALYSIS

6.3 Preprocessing

Two source-to-source transformations are performed before determinism analysis takes place.
The aim of these transformations is to find certain code features which, when identified, can
improve the accuracy of determinism analysis.

The first of these is switch detection, which determines whether branches of a disjunction
are mutually exclusive. The second is common subexpression elimination, which exposes

some switches that aren’t immediately obvious.

6.3.1 Switch Detection

Consider the following definition of one procedure of append/3 as seen after conversion to

super-homogeneous form and mode analysis has taken place:

:- pred append(list(T), list(T), list(T)).
:- mode append(in, in, out) is det.

append(Xs, Ys, Zs) :-

(Xs =11,
Ys = Zs
Xs = I:X | XS]—],

append(Xsl, Ys, Zsl),
Zs = [X | Zs1]
).

This procedure contains a disjunction, but it is deterministic. This is because the two
disjuncts are mutually exclusive when Xs is known to be bound: it must be either bound
to the empty list [], or the non-empty list [X | Xs1]. A disjunction that unifies a bound
variable with a different functor in each disjunct is known as a switch, due to the superficial
resemblance to switches in C programs. The associated unifications are called switching
unifications. A disjunct containing a switching unification is called a switching disjunct.

There are two ways to categorise a switch. Firstly, a full switch is a disjunction containing
a switching unification in every disjunct. At most one of the disjuncts can succeed. By
contrast, a partial switch is a disjunction in which not every disjunct contains a switching
unification. At most one of the disjuncts containing a switching unification can succeed.

Secondly, a cannot_fazl switch is a disjunction in which every functor allowed by a
variable’s instantiation is involved in a switching unification, with at most one per disjunct.
Exactly one of these unifications will succeed. A can_fazl switch is similar, except that
only a strict subset of the constructors allowed by a variable’s instantiation are involved in
switching unifications. Zero or one of these unifications will succeed.

Note that these categorisations assume that each functor is not involved in more than
one switching unification per switch. We can assume this because common subexpression
elimination (which will be described in Section 6.3.2) ensures it is true.

The following procedures demonstrate the four possible switch combinations, and their

effect on the determinism of the switch. Note that if a predicate has only one procedure, the

6.3. PREPROCESSING 85

type, mode and determinism declarations can be combined by pairing the type and mode of

each argument with the ::/2 functor and appending the determinism declaration.

:— typedef abc -> (a ; b ; c).

:— pred full_cannot_fail(abc::in) is det.
full_cannot_fail(X) :-
(X=a;X=b;X=c).

:- pred full_can_fail(abc::in) is semidet.
full_can_fail(X) :-
(X=a;X=>b).

:- pred partial_cannot_fail(abc::in) is multi.
partial_cannot_fail(X) :-
(X=a;X=b; X=c; true).

:- pred partial_can_fail(abc::in) is multi.
partial_can_fail(X) :-
(X=a; X=Db; true).

Note that although the switching disjuncts of partial_can_fail can fail, in this case the
non-switching disjunct will always succeed, so the disjunction will never fail.

In practice, the vast majority of switches are full and cannot_fail, since they are most
commonly used to deal with constructor types where each arm of the switch handles one
functor.

Switches are detected in a disjunction by considering all non-local variables that are
bound before entry to the disjunction. If at least two of any variable’s possible functors
are tested in distinct disjuncts, a switch is known to be present. Note that unlike the first-
argument indexing present in most CLP systems, switches will be detected on any clause
variable.

As soon as a full switch is found, we can stop looking since we know the disjunction has
at most one solution. If we find a partial switch we remember it but continue looking for
more switches. If only partial switches are found, we choose the one that covers the most
disjuncts. In the case of a tie, the first one found is chosen arbitrarily.

If the best switch found is partial, the disjuncts containing the switching unifications are
gathered into a new sub-disjunction. For example, partial_cannot_fail defined above is

transformed into this form:

partial_cannot_fail
((X=a;X=b;X=c)
; true

).

2Henderson et al. state on page 8 of [22] that when choosing between partial switches, “the nature of the
heuristic used does not seem to matter much in practice.”

86 CHAPTER 6. DETERMINISM ANALYSIS

This simplifies determinism analysis, since it removes all partial switches.
If a disjunction is found to be a switch, it is marked as either can_fail or cannot_fail.
The switching unifications are also marked. Both these markings are used when determining

the disjunction’s determinism, as will be explained in Section 6.4.

6.3.2 Common Subexpression Elimination

The described approach to switch detection finds the majority of switches in HAL programs.
However there are some important cases that misses. For example, consider the following

predicate:

:— pred count_elements(list(T)::in, int::out) is det.
count_elements([], 0).
count_elements([_], 1).

count_elements([_,_I_1, 2).

When converted to super-homogeneous form, it becomes as follows:

count_elements (A, B) :-
(A=1[],B=0
; A [C| D], D
; A=[E| F], F
).

[1,B=1
[G| H, B=2

The problem is that these three disjuncts are mutually exclusive, but there are actually
two switches present; one switches between A being empty or non-empty, and the other
switches between the tail of A being empty or non-empty. To find both switches the common
subexpression shared by the second and third disjuncts must be eliminated by “hoisting” it

as follows:

count_elements (A, B) :-

(A=1[],B=0

; A= [C | D],
(D=10,B=1

; D=[G | H, B=2
)

).

The two switches present are now clearly separated and can be found by the technique
described in the previous section. Common subexpression elimination therefore must be
performed before switch detection. Note that the first-argument indexing performed by
most CLP systems would not be enough to avoid trying the second clause for lists of length
two or more in a predicate such as count_elements.

The algorithm for performing common subexpression elimination is quite similar to that
for switch detection, and the two phases share code in the compiler. It too searches for
switching unifications in disjuncts; once it finds them, it combines any unifications that

match against the same functor by hoisting out the first of the common unifications. Note

6.4. DETERMINISM ANALYSIS OF BODIES 87

that some variables in the second and subsequent arms must be renamed or eliminated (in
the example given, E is removed, and F is renamed as D).

Three phases of the compiler must then be reinvoked on all changed procedures.

1. Variable scopes are recomputed to take into account the new disjunction. For example,
after count_elements is transformed, the variables G and H change from being local
variables of the third disjunct to being local variables of the second disjunct of the
inner disjunction. The local variable sets of affected bodies must also be updated to

account for renamed and eliminated variables.

2. Mode analysis is rerun to compute the instantiations of the relevant variables at the
new program points created by the introduction of the new disjunction. This is neces-
sary because determinism analysis and other subsequent phases require these instan-

tiations at every program point.

3. Common subexpression elimination is again performed to eliminate any nested com-

mon subexpressions.

These steps are repeated as many times as necessary. Once they are complete, switch
detection can be performed. Note that common subexpression elimination cannot cause the
compiler to enter an infinite loop, as the number of unifications that match the same functor

is reduced by each iteration.

6.4 Determinism Analysis of Bodies

The determinism of each body in the program is inferred as follows.

6.4.1 Literals

Procedure calls: The determinism of a call to a local procedure is the determinism in-
ferred for that procedure. The fixpoint that needs to be reached for the determinism inference
of procedures that call each other is computed appropriately by the analysis framework.

The determinism of an external procedure call can be found in the imported module’s
interface file. Thus, before a module can be compiled, interface files must be generated for
all the modules it uses. These interface files contain information about all exported items,
including the determinism of all exported procedures. The determinism is guaranteed to
be there, because all exported procedures must have a determinism declaration; this makes
determinism analysis simpler. Of course, the determinism for the external procedures may
be incorrect — interface file generation does not perform determinism checking, but trusts
the programmer’s declarations — but this is unavoidable when using separate compilation.
This is not a problem in practice, since all declarations must be checked before the program
can be run.

The determinism of a higher-order call using call/n is equal to the determinism of the
higher-order argument’s procedure. This determinism is always known because HAL only

allows higher-order terms to be created from procedures whose determinism is declared.

88 CHAPTER 6. DETERMINISM ANALYSIS

BB un o n ol

B B nn nn Hh Hh|H

HhoHh Fh o Hh Hh @ | Fh
BB aHO &
B B n Q H 0|
8B BB aaQ

BB un oo
Hh O O FhD| O
BB nwn H o0ofn
BB BB MO B
BB BB OB
B B aaHO©O
BB 0 Qa0 0|0
BB BB ®D®
8B BB B BB
B B8 B BB BB
BB un oo
BB w om0
BB n nlin
B BB BB BB
BB BBB BB

—~

a) (b) (c)

Table 6.2: Determinism of conjunctions, disjunctions, full cannot_fail switches

Unifications: All unifications are either det or semidet. The exact determinism depends
on the instantiation of the arguments. There are only four forms of unifications that can
appear after mode analysis; any unification not fitting one of these forms will be converted

into two or more unifications that do.

e Unifications of the form X =Y where one variable is new are assignments. They are

always det.

e Unifications of the form X =Y where neither X nor Y are new are usually semidet,
but may be det if X and Y are known to be ground and equal.

e Unifications of the form X = f(Y7,...,Y},) where X is new are constructs. They are
det.

e Unifications of the form X = f(Y7,...,Y},,) where X is not new and Y3,...,Y,, are
distinct new variables are deconstructs. They are usually semidet, but can be det
when X is of a type whose only functor is f/n or X is known to be bound to f/n.

There is one exception to these rules: unifications marked as switching unifications are
always treated as det. This is explained in Section 6.4.4.

Higher-order unifications: The determinism of a higher-order unification is always det,

since the variable on the left-hand side is guaranteed to always be new.

6.4.2 Conjunctions

The determinism of a conjunction of two bodies is found by the predicate conj_two_dets,
the operation of which is summarised by Table 6.2(a). Each determinism value is repre-
sented by its first letter; the row entries represent the first conjunct’s determinism, and the
column entries represent the second conjunct’s determinism. Note that the combination
is not symmetric; if the first conjunct is erroneous or failure, the conjunction’s overall
determinism is erroneous or failure.

Most of the combinations are straightforward. One potentially confusing combination is
that of (semidet, erroneous) conjunctions, which have the determinism failure. The
reason is that such conjunctions can fail (if the first conjunct fails), and they will never pro-

duce a solution (either the first conjunct will fail or control will not return from the second).

6.4. DETERMINISM ANALYSIS OF BODIES 89

Hence, their overall determinism is failure. The (nondet, erroneous) combination is
similar.

The determinism of a conjunction with more than two bodies is obtained by folding
conj_two_dets left-to-right through the list of individual determinisms. Essentially, a con-
junction can fail if any of its conjuncts can fail; it will have no solutions if any of its conjuncts
have no solutions; it will have many solutions if all of it conjuncts can succeed and at least
one has many solutions; and it is deterministic only if all its goals are deterministic.

6.4.3 Disjunctions

The determinism of a non-switch disjunction is found similarly to that of a conjunction,
but using the combinations from Table 6.2(b). Unlike conjunctions, the combinations are
symmetric.

Essentially, a disjunction can fail only if all its disjuncts can fail; it will have many
solutions if any of its disjuncts have many solutions or at least two of them have one solution;
and it will be deterministic only if one disjunct is deterministic and all the others have no
solutions. In practice, non-switch disjunctions are very rarely deterministic.

Note that the combination of two disjuncts is not a least upper bound operation. In
particular, the least upper bound of any two elements in a lattice must be idempotent,
i.e. elde = e. This is not the case with disjp for determinism, for example a disjunction of

two det disjuncts has the determinism multi.

6.4.4 Switches

The determinism of a full switch is found similarly to that of a non-switch disjunction,
but using the combinations from Table 6.2(c). Note that these are the combinations for a
cannot_fail switch; a can_fail switch can always fail, changing the entries that cannot fail
(erroneous, det, multi) to the corresponding values that can (failure, semidet, nondet).
Also recall that all partial switches are removed during switch detection, so we only have to
consider full switches.

A switch differs from a non-switch disjunction in that at most one of its disjuncts will
produce a solution. Switching unifications would normally be semidet, being either decon-
structs or equality tests, but we ignore them (by treating them as det, the identity element
for conjunction) so their semidet-ness does not “taint” the determinism of the rest of each
switching disjunct. The semidet-ness of the switching unifications is instead taken into
account in the combination in Table 6.2(c).

Note that the combination of two switch arms in a cannot_fail switch is the least upper
bound.

6.4.5 If-then-elses

The behaviour of if-then-elses is different in HAL to most other CLP languages — if the

condition of an if-then-else can succeed multiple times, the second and subsequent solutions

90 CHAPTER 6. DETERMINISM ANALYSIS

will not be pruned. The else branch will only be taken if the condition fails before producing
any solutions. HAL inherits this behaviour from Mercury.
To compute the determinism of an if-then-else, we must break up each branch’s deter-

minism into its components. This is done using the following types and predicate:

typedef determ -> (det ; semidet ; multi
; nondet ; failure ; erroneous).
:- typedef can_fail -> (can_fail ; cannot_fail).

:- typedef max_soln -> (zero ; one ; many).

:— pred determinism_components(determ, can_fail, max_soln).
:- mode determinism_components(in, out, out) is det.
:- mode determinism_components(out, in, in) is det.

determinism_components (erroneous, cannot_fail, zero).

determinism_components(failure, can_fail, Zero) .
determinism_components(det, cannot_fail, one).
determinism_components (semidet, can_fail, one) .
determinism_components (multi, cannot_fail, many).
determinism_components (nondet, can_fail, many) .

If the determinism of the three branches of an if-then-else are IfDeterm, ThenDeterm,
and ElseDeterm, and they have been broken into their can_fail and max_soln parts by
determinism_components, the overall determinism Determ of the if-then-else is found as

follows:

(IfCanFail = cannot_fail ->

conj_two_dets(IfDeterm, ThenDeterm, Determ)

IfDeterm = failure —>

Determ = ElseDeterm

IfDeterm = erroneous ->

Determ = erroneous

conjunction_maxsoln(IfMaxSoln, ThenMaxSoln, IfThenMaxSoln),
full_switch_maxsoln(IfThenMaxSoln, ElseMaxSoln, MaxSoln),
full_switch_canfail (ThenCanFail, ElseCanFail, CanFail),

determinism_components (Determ, CanFail, MaxSoln)

The actions of conjunction_maxsoln, full_switch_maxsoln and full_switch_canfail
are summarised in Tables 6.3, 6.4 and 6.5.

If the condition cannot fail, the else branch can be ignored. If the condition always fails,
the overall determinism is that of the else branch. If the condition is erroneous, the whole

if-then-else is erroneous. Otherwise, the condition can both fail and succeed; in this case,

6.5. DETERMINISM ANALYSIS OF MODULES 91

zero one many zero one many
zero | zero zero zero zero | zero one many
one zero one many one one one many
many | zero many many many | many many many

Table 6.3: Conjunction Table 6.4: Full switch

max_soln combinations max_soln combinations

can_fail cannot_fail
can_fail can_fail can_fail
cannot_fail | can_fail cannot_fail

Table 6.5: Full switch can_fail combinations

the if-then-else is basically a cannot_fail switch between the then and else branches. But
if the condition succeeds multiple times, the then branch can succeed multiple times even if

it is deterministic.

6.5 Determinism Analysis of Modules

Determinism analysis is performed after type and mode analysis, common subexpression
elimination and switch detection. It infers the determinism of all procedures, checks the
declared determinism of procedures with declarations, and issues warnings and errors about
determinism violations.

The fixpoint required for determinism inference is provided by the analysis framework.
All that is required is a suitable instance of the type class abstract_domain (defined in

Section 4.3), the methods of which are shown in Figure 6.2.

e Acomb conjoins two determinisms using conj_two_dets (the variable sets are ignored).

e Aadd obtains the determinism of the literal using get_literal_determ,; its definition
is not shown, but it behaves according to the rules for literals given in Section 6.4.1.

The determinism is then combined with D using conj_two_dets.
e Adisj disjoins multiple determinisms according to the rules in Sections 6.4.3 and 6.4.4.
e Aif_to_then always returns det, the truep element for determinism.

o Aif_then_else combines the determinism of the three branches according to the rules in
Section 6.4.5.

e Aoutrestrict is trivial, as determinism doesn’t involve variables.
e Ainrestrict always returns det, the truep element for determinism.
e Aextend is also trivial, again because determinism doesn’t involve variables.

e Abottom returns erroneous, the determinism lattice’s bottom element.

92

Acomb(_, Dl, — Dz)
conj_two_dets(Dy, Ds, D)
return answer(D)

Aadd(L, D)
Dyt := get_literal_determ(L)
conj_two_dets(D, Dy, D)
return answer(D')

Adisj(Ds)
% See Sections 6.4.3, 6.4.4

Aif_to_then(_)
return det

Aif_then_else(D;f, Dy, Dep)
% See Section 6.4.5

Aoutrestrict(_, D)
return D

Ainrestrict(_, -)
return det

CHAPTER 6. DETERMINISM ANALYSIS

Aextend(_, D)

return D

Abottom(_)

return erroneous

Ainitial_guess(-)
return unreached

Ais_constraint(_)
return false

Acalling_descHO(- : .)
return det

Aexternal_proc(P :)
if (P = call/n)
D := determinism of higher-order term

else
D :=lookup P in external interface file
return D

Figure 6.2: Determinism analysis abstract operations

o Ainitial_guess doesn’t attempt to obtain an initial answer; it returns unreached.

e Ais_constraint returns false. No procedure calls need to be considered specially for

determinism analysis.

o Acalling_descHO returns det, the truep element for determinism.

e Aexternal_proc finds the determinism of external procedures as explained in Section

6.4.1 — it looks up the external module’s interface file unless it is a higher-order

application using call/n, in which case the determinism is that of the procedure

captured by the higher-order term.

These class methods provide an example of how to perform bottom-up analysis within the

framework, as was described in Section 3.3.4 — Aif_to_then, Ainrestrict, and Acalling_descHO

all return truep, which for determinism is det. The only other requirement for bottom-up

analysis is that the initial set of calling patterns S only contain calling patterns of the form

P : truep. For determinism analysis we initialise S by adding P : det for every procedure

exported from the module.

If the final answer for a procedure is unreached, e.g. due to degenerate recursion, this is

interpreted as erroneous.

6.6. ERRORS AND WARNINGS 93

6.6 Errors and Warnings

Warning and error messages are issued when a determinism declaration doesn’t match that
inferred.® If the declared determinism is strictly tighter than the inferred determinism
according to the determinism lattice (e.g. declared det, inferred semidet), or if the two
determinisms are incomparable (e.g. declared semidet, inferred multi), an error is issued.

If the declared determinism is strictly laxer than the inferred determinism according to
the determinism lattice (e.g. declared semidet, inferred det), a warning is issued. This
is not a serious problem — the determinism is not incorrect, just inaccurate, which may

degrade performance slightly (see Section 6.7.2 for an explanation).

6.7 Experimental Analysis Evaluation

This section evaluates HAL’s determinism analysis by considering the time taken during
compilation to perform the analysis, and the performance improvements it provides; it also

provides a discussion of the accuracy of the analysis and its effect on programming style.

6.7.1 Cost of Analysis

To determine the cost of determinism analysis at compile-time, a number of modules of vary-
ing sizes were tested: five traditional standalone Prolog benchmarks (aiakl, boyer, fib,
gsortdiff and warplan), rewritten as HAL programs; five medium-sized solver modules
(bounds, dfd, domain, mset and simplex); and five larger modules from the HAL com-
piler itself (freeness_ops, swdet_cse, fixpoint_framework, global_declarations and
mode_analysis_framework). The experiments were run under the same conditions as those
in Section 5.6.1, except that the determinism analysis phase replaced the Herbrand analysis
phase.

Table 6.6 shows the results of analysing these modules. Columns two and three give
the number of predicates and literals (before normalisation) in each module. Column four

4 column

gives the time taken for switch detection and common subexpression elimination,
five gives the time taken for determinism analysis, column six is the sum of the previous
two columns, and column seven gives the overall compilation time. Column eight gives
the proportion of compilation time taken up by switch detection, common subexpression
elimination and determinism analysis (i.e. column six divided by column seven). All times
are in milliseconds, rounded to the nearest ten.

Switch detection and common subexpression elimination were significantly cheaper than
determinism analysis for all modules except mode_analysis_framework; switch detection
was more expensive for that module because it contains a number of very long predicates
(some with more than 100 literals), so a high proportion of unifications had to be tested to

see if they could be switched on.

3Note that determinism declarations are not used during analysis, but only during the checking stage.
4The two phases are intertwined in the compiler which makes it difficult to measure them separately.

94 CHAPTER 6. DETERMINISM ANALYSIS

| Module | Preds Lits [SWCSE Det Both All | Prop |
aiakl 13 47 10 40 50 9810 | 0.5%
boyer 17 136 60 160 220 5730 | 3.8%
fib 5 14 0 10 10 750 | 1.3%
gsortdiff 11 22 10 30 40 10830 | 0.3%
warplan 34 166 60 320 380 14920 | 2.5%
bounds 34 199 10 120 130 4110 | 3.2%
dfd 22 219 20 240 260 6220 | 4.2%
domain 47 335 40 270 310 5940 | 5.2%
mset 36 242 50 200 250 4290 | 5.8%
simplex 47 223 50 220 270 4760 | 5.6%
freeness_ops 53 241 70 280 350 13760 | 2.5%
swdet_cse 49 444 340 430 770 21650 | 3.6%
fixpoint_framework 83 702 180 700 880 30650 | 2.9%
global_declarations 226 991 570 1640 2210 63090 | 3.5%
mode_analysis_framework 122 1490 2300 1630 3930 65700 | 6.0%

Table 6.6: Cost of determinism analysis (ms)

The three phases together account for 0.3-6.0% of compilation time, although if we ignore
the figures of 0.3% and 0.5% for gsortdiff and aiakl (which were skewed by extremely
long mode analysis phases) and 1.3% for £ib (which is too small to be reliable) the range is
2.5%6.0%.

This shows that determinism analysis is clearly quite cheap, and supports the claims of
Section 4.9.7 that bottom-up analysis is quite efficient within the top-down analysis frame-
work. It also shows that determinism analysis scales very well — the two largest modules
global_declarations and mode_analysis_framework consist of 1,870 and 2,013 lines of
code respectively (excluding blanks and comments). This is not surprising considering the

simplicity of the domain, which precludes the possibility of an “explosion” in analysis time.

6.7.2 Effect of Optimisations

Determinism analysis is an example of an analysis for correctness that also has efficiency
benefits. This is because a procedure that can succeed only once can be executed more
efficiently than a procedure that can succeed multiple times, as there is no need to consider
backtracking. Similarly, a procedure that cannot fail can be executed more efficiently than
one that can.

Since HAL compiles to Mercury, we can take advantage of this optimisation performed
by the Mercury compiler for free. The Melbourne Mercury Compiler has three different
execution algorithms of increasing complexity and decreasing time and space efficiency.

1. A deterministic execution algorithm, for det procedures.
2. A semi-deterministic execution algorithm, for semidet procedures.

3. A non-deterministic execution algorithm, for multi and nondet procedures.®

5There is no dedicated multi-deterministic execution algorithm because multi procedures may fail upon

6.7. EXPERIMENTAL ANALYSIS EVALUATION 95

Benchmark Preds Lits | TM TMD | Factor
aiakl 7 21 40 30 1.3
boyer 14 124 90 50 1.8
deriv 1 33 | 740 500 1.5
fib 1 6 20 20 1.0
hanoiapp 2 7| 610 220 2.8
hanoidiff 2 6 80 110 0.7
mmatrix 3 71 110 40 2.8
gsortapp 3 10 | 390 190 2.1
gsortdiff 3 10 | 370 210 1.8
serialize 5 19 | 350 270 1.3
tak 1 9 100 50 2.0
warplan 25 88 | 330 220 1.5
Total/Average 67 340 | 3230 1910 1.7

Table 6.7: Effect of determinism optimisations (ms)

See [56] for details of the three execution algorithms.

No new experimental results are presented here, since a careful evaluation of the effect
of type, mode and determinism declarations on HAL programs was presented in [11]. It
described tests performed on a subset of the standard Prolog benchmarks: aiakl, boyer,
deriv, fib, hanoiapp, hanoidiff, mmatrix, qsortapp, qsortdiff, serialize, tak and

warplan.

For the determinism results, the benchmarks were first written with precise type and
mode declarations, but each procedure was declared as nondet, and timings were made.
Precise determinism declarations were then added, and timings were made again. The re-
sults dealing with determinism declarations from [11] are reproduced in Table 6.7. Columns
two and three give the size of each benchmark (number of predicates and literals before nor-
malisation, excluding dead code and the query).® Columns four and five give the execution
time before and after precise determinism declarations were added (in milliseconds, to the

nearest ten). Column six gives the improvement factor.

The maximum improvement was by a factor of 2.8, for hanoiapp. The only program
that slowed down was hanoidiff, which ran at 0.7 times the original speed. The overall
improvement found by comparing the total execution time of the benchmark suite was a

factor of 1.7; regardless of the exact comparison used, the optimisation is clearly beneficial.”

retry, so the non-deterministic execution algorithm’s mechanism for handling failure is required.

6The number of predicates and literals for aiakl, boyer, fib, hanoidiff, gsortdiff and warplan are
different from those given in Tables 5.4 and 6.6. This is due to the query (excluded from this table), and
slight differences between the versions used. The common procedures had identical determinism declarations,
however.

7This experiment was possible because Mercury does not do full determinism inference, but only checks
the determinism of procedures with determinism declarations; thus the non-deterministic execution algorithm
is used for any procedure declared nondet, even if it is actually deterministic or semi-deterministic. By
contrast, the HAL compiler performs full determinism inference, and then checks each declaration.

96 CHAPTER 6. DETERMINISM ANALYSIS

6.7.3 Limitations

As stated in Section 6.1, the determinism inference algorithm is not perfect (and cannot

be). Recall one procedure of the mortgage program given in Section 2.4.1:

:- pred mortgage(cfloat, cfloat, cfloat, cfloat, cfloat).
:- mode mortgage(in, in, in, in, out) is nondet.
mortgage(P, T, I, R, B) :-

T=0.0, B=P.
mortgage(P, T, I, R, B) :-

T >= 1.0,

mortgage(P + PxI - R, T - 1.0, I, R, B).

This procedure is actually semidet, as it contains a can_fail switch on the variable T.
Unfortunately, the compiler infers it as nondet, because it has no domain knowledge of
integers, and cannot determine that the two rules are mutually exclusive.

It would be reasonably straightforward to build in some domain knowledge of numbers
that would enable procedures such as this to be analysed correctly, and HAL’s switch de-
tection may be extended to do so in the future. But in the general case it is always possible
to write procedures that the compiler will infer inaccurately. Typically this can be easily

fixed, e.g. by rewriting an undetected switch as an if-then-else:

mortgage(P, T, I, R, B) :-
(T=0.0-—>
B=P

T > 1.0
mortgage(P + PxI - R, T - 1.0, I, R, B)

Another alternative is to declare the procedure as nondet. This is less satisfactory, since it
will degrade performance, and is somewhat misleading.
In practice, as with Mercury, the determinism system works extremely well, and cases

such as this one are easily worked around.

6.7.4 Effect on Programming Style

HAL’s determinism system promotes a very safe, conscientious programming style; many
cases that are supposedly impossible due to implicit program invariants must be explicitly
handled (usually by throwing an exception or aborting execution). This is a good thing,
since all too often such implicit invariants can be broken due to bugs, or subsequent program
changes; a program that gives an obvious run-time error is almost always preferable to one
that silently continues incorrectly.

For example, imagine that the predicate count_elements from Section 6.3.2 is used in

a program in which the first argument should never be empty due to a program invariant.

6.8. CONCLUSION 97

Even though the programmer knows the empty list case will never be called, in order for

the procedure to be inferred as det, the empty list case must be defined. For example:®

:— pred count_elements(list(T)::in, int::out) is det.
count_elements([], _) :- error("count_elements: Unexpected empty list").
count_elements([_], 1).

count_elements([_,_|_]1, 2).

The empty list case may seem redundant, but if the program invariant is ever broken and an
empty list is passed to count_elements, a run-time error will occur immediately, making it
very clear exactly what the problem is and where it occurred (assuming the error message
is sufficiently informative).

6.8 Conclusion

HAL’s determinism system almost completely eliminates the two problems described at the

start of this chapter.

1. Correctness: It identifies almost all determinism errors, which constitute a significant
proportion of all programming errors. It also promotes a robust programming style
that provides a good level of protection against the accidental violation of program

invariants.?

2. Efficiency: It allows more efficient code generation. Each procedure uses the most
appropriate of three different execution algorithms, of increasing simplicity and effi-
ciency, depending on whether the procedure is non-deterministic, semi-deterministic,
or deterministic; the price of non-determinism and semi-determinism is only paid by
those procedures that use them. Prior experiments have shown this specialisation
increases the speed of HAL programs by a factor of about 1.7. The cost of deter-
minism analysis is quite small, only about 2.5-6.0% of compilation time, which shows
the optimisations enabled definitely make it worthwhile from an efficiency standpoint

alone.

Thus determinism analysis is an example of an analysis for correctness that also allows
performance improvements.

The final benefit of determinism declarations is that they provide a useful form of doc-
umentation for each procedure, which is particularly valuable since they are confirmed by

the compiler, and thus known to be correct.

8The first argument could also be given a mode that ensures it is non-empty, in which case any potential
violations would be found at compile-time, and the first clause could be omitted. But for more complicated
invariants that the compiler cannot prove, run-time tests must be used.

90f course, this assumes the programmer gives appropriate declarations; determinism errors cannot be
found if a programmer abuses the system by declaring every procedure to be nondet.

98

CHAPTER 6. DETERMINISM ANALYSIS

Chapter 7

Inter-module Analysis

Most modern programming languages have a well-defined module system for dividing pro-
grams into manageable pieces. This is very important when “programming in the large”, as
it allows different programmers to work on separate modules. Module systems are also the
means by which some language features are implemented. For example, in HAL abstract
types are created by exporting a type abstractly from a module using the export_abstract
declaration.

Most programming languages with a well-defined module system also support separate
compilation, whereby each module can be compiled by itself. Once all the modules in a
program are compiled, they can be linked together into an executable. Separate compilation
is vital because in large projects with many modules, it is not reasonable to change a single
module and require recompilation of all other modules, as this may take minutes or even
hours.

HAL is no exception. The basics of its module system were introduced in Section 2.4.1.
It supports separate compilation by generating interface files for each module which provide
sufficient information about exported program items (types, modes, predicates, and so on).
Before a file can be compiled, the interface files of all the modules it imports must be
generated. Once all the modules in a program have been compiled they can be “linked”,
i.e. the generated Mercury files can be compiled by the Mercury compiler.

Separate compilation is particularly important in HAL because each solver is written in

its own module. There are three reasons for this.
1. It is quite sensible from a program design viewpoint.

2. If the representation of a solver type is to be hidden, it must be exported abstractly

from its own module.

3. Most solvers have differing “internal” and “external” views of solver types; for example,
a constrained floating point variable with instantiation old outside the solver may
actually be represented as a ground index into a simplex tableau inside the solver (see

[12, 17] for more details on writing solvers in HAL).

Because HAL solvers are defined as separate modules, accurate inter-module analysis is

vital. And because solvers are so much more general than other CLP solvers, and are

99

100 CHAPTER 7. INTER-MODULE ANALYSIS

written similarly to other HAL modules, generic analysis techniques must be supported.
These characteristics drive the need for practical, accurate inter-module analysis.

This chapter describes the compilation model used in the HAL compiler for performing
inter-module analysis and optimisation. The compilation model naturally complements the
analysis framework presented in Chapter 4, and supports multi-variant specialisation — the
generation of multiple versions or variants of a procedure, each specialised for a particular
calling pattern — without any assistance from the programmer (see [51, 36] for descriptions

of other systems that also perform multi-variant specialisation).

7.1 Difficulties of Inter-module Analysis

One problem with module systems and separate compilation is that they make context-
sensitive program analysis difficult. When compiling a single module, not all the other
modules in the program have necessarily been compiled and analysed, so we must work with
possibly incomplete information. This leads to two problems.

1. How do we obtain accurate context-sensitive answers for calls to external procedures?
Modules containing these procedures may not have been compiled yet, so these answers

may not be present. We will call this the unknown answers problem.

2. In what contexts should the exported procedures of a module be analysed? Modules
that call these procedures may not have been compiled yet, so their calling contexts

may not be known. We will call this the unknown contexts problem.!

These problems are particularly relevant for compilers such as the HAL compiler that per-
form multi-variant specialisation without any assistance from the programmer.2 These prob-
lems are also relevant for a compiler that generates only a single variant of each procedure
that is “as specialised as possible” given the contexts from which it is called.

In the context of the intra-module analysis framework presented in Chapter 4, the two

problems correspond directly to these two questions.

1. What answer should Aexternal_proc return for any given calling pattern?

2. What calling patterns should be in the initial set S7
With these questions in mind, let us now consider some previous approaches to inter-module
analysis and optimisation.
7.2 Previous Approaches

There are surprisingly few publications on approaches to inter-module analysis. Nonetheless,

here is a summary of those found in the literature.

INote that the terms optimal success problem and optimal calls problem are used in [52].
2As opposed to programmer-assisted multi-variant specialisation, such as that performed by the HAL
compiler for predicates with multiple procedures.

7.2. PREVIOUS APPROACHES 101

Sheer pessimism: The simplest approach is to assume the worst and use a strategy that
is safe in all circumstances. The unknown answers problem is solved by using T as the
answer for external procedure calls. The unknown contexts problem is solved by analysing
each exported procedure P using the calling pattern P : T. Obviously, this approach may

give very poor results for multi-module programs.

Abandon context-sensitive analysis: Using goal-independent analysis instead of goal-
dependent analysis is a commonly used approach. Unfortunately, the results are not as
accurate unless the analysis domain satisfies quite restrictive properties.® Also, because pro-
cedures are not analysed in context, it is not possible to perform inter-module multi-variant
specialisation without programmer declarations or by using a subsequent goal-dependent

step which would suffer from the original two problems.

Usage conditions: Mazur et al. describe a memory reuse analysis for Mercury [45], and
suggest a method for applying it across module boundaries. Two versions of each procedure
are generated: one involving the reuse suggested by a so-called default analysis, and one
involving no reuse. The version using reuse is annotated with the conditions the calling
procedure must satisfy to safely call it. This is a reasonable approach for analysis domains
that have a suitable default analysis and in which such calling conditions can be expressed,
however it results in an imprecise specialisation because the default analysis used is not

tailored to individual calls.

Cross-module inlining: A different approach is to use inter-module inlining to reduce
the two problems. For example, Mercury allows inter-module optimisation for several of its
optimisations. As described in [61], the declarations and code of suitable procedures are
written to a generated .opt file; when compiling a module that imports a module with a
.opt file, the .opt file is read as if it were part of the source of the module being compiled.

One problem with this approach is that information can only be propagated from im-
ported modules to importing modules — there is no way for a module to “request” infor-
mation from another module — so it partially solves the unknown answers problem (for
procedures included in the .opt file), but not the unknown contexts problem. Also, the in-
formation propagation is not transitive — it can only cross one module boundary. Page 20
of [61] emphatically demonstrates this problem; when applying a deforestation optimisation

to the Mercury compiler itself:

“Unfortunately this does not result in a measurable change in runtime. The
main reason for this is that much of the runtime of the compiler is taken up by
predicates manipulating 2-3-4 trees and sets represented by ordered lists. These
predicates are hidden under two levels of interfaces to allow easy replacement of
the data structures, which hinders inter-module optimisation.”

A more complex and powerful approach is lambda-splitting [2], used in the SML/NJ compiler

[39] for Standard ML [46] which involves breaking modules into inlineable and non-inlineable

31t must be condensing; see e.g. Section 4 of [40].

102 CHAPTER 7. INTER-MODULE ANALYSIS

parts. Still, to make inter-module analysis information available only via inter-module inlin-
ing is clearly unsatisfactory; for example, it is of little use for large procedures that should

not be inlined.

Mercury’s termination analysis approach: Mercury allows transitive inter-module
information propagation for its termination analysis, recorded in .trans_opt files. The
unknown contexts problem is not relevant for termination analysis, since it is a bottom-up
analysis and calling contexts are irrelevant.

The unknown answers problem is solved by compiling according to dependency order
when possible, and using “don’t know” (i.e. may not terminate) for procedures missing an
answer. Each .trans_opt file can rely on other .trans_opt files, allowing termination in-
formation to be propagated across multiple module boundaries. This approach finds the
greatest fixpoint of the termination information across modules. One unavoidable conse-
quence of this is that it can never prove that mutually recursive procedures in different
modules can terminate.

We will see that this approach has similarities to the approach used by HAL, although
HAL’s approach is more general, works for top-down analyses, and supports multi-variant

specialisation.

7.3 The HAL Approach

The approach used by the HAL compiler was first described in [6]. It has one principal
idea: at each stage both the analysis information and the executable program are correct,
but recompilation may result in improved generated code. To create a correct executable,
each module only needs to be compiled once. To create a maximally optimised executable,
each module may need to be compiled more than once. If the code is changed, some anaysis
information may no longer be correct, and must be invalidated.

When a module is compiled, it “asks” that information missing from the modules it calls
be gathered when they are next compiled, and “tells” its calling modules when previously
unavailable or more accurate information is available. We use T* as the calling description
for a procedure if its context is unknown, and T* for unknown answers.* Variants are
generated for all calling patterns encountered so far, and if a required variant from another
module has not been generated yet, we use the best safe variant that has been generated. The
variant for the default P : T* calling pattern of each procedure is always generated, so there is
always a safe variant of each procedure to link with. As compilation proceeds, increasingly
accurate information is gathered and more accurate answers and calling descriptions are
found until the greatest inter-module analysis fixpoint is reached and an optimal executable
can be created.

There are two primary data structures required for this compilation model: the analysis

registry, and the inter-module dependency graph.

4Recall that Section 5.3.2 defined T* as the top-most description possible with respect to other informa-
tion, such as mode declarations or previous analyses.

7.3. THE HAL APPROACH 103

7.3.1 Analysis Registry

The analysis registry (or registry for short) is an extended answer table containing the most
up-to-date answer obtained for each exported procedure. Basic registry entries have the
same form P : Dp — Ans as entries in the answer table used in the analysis framework
(see Section 4.2.2), but they can be augmented with three pieces of extra bookkeeping

information.

e An entry with an answer that is still safe, but might be improved through further

compilation is marked and annotated with the e symbol.

e An entry with an answer that is no longer safe and should not be used is invalid and

annotated with the L symbol.

e An entry for a calling pattern for which no variant has yet been generated is annotated
with a version calling pattern which indicates the most optimised variant that can be

safely used in its stead.
This leads to the following five forms of registry entry.

e P: Dp — Ans means the answer Ans is up-to-date, and the compiled variant of P is

valid and optimal.

e P: Dp —* Ans means the answer description Ans can be safely used, and the compiled
variant of P is valid but possibly sub-optimal. This occurs when a more precise answer
is obtained for a calling pattern that P : Dp relies on. Recompilation of P’s module

may result in a better answer and a more highly optimised variant.

e P: Dp —1 Ans means the answer description Ans cannot be safely used and the
compiled variant of P is invalid. This occurs when a less precise or incomparable
answer is obtained for a calling pattern that P : Dp relies on. The module containing
P must be recompiled before the final executable can be created.

e P: Dp —* Ans (P : Dp) means the calling pattern P : Dp was encountered in
another module, but there was no entry for it. Ans was the best answer we could
obtain from the existing information, and P : Dp was the best safe variant we had
generated code for. We will continue to use the answer Ans and the P : D}, variant
until the module containing P is recompiled whereupon the exact answer will be found

and the dedicated variant will be generated.

e P:Dp —L Ans (P : Dy) means this once was a marked entry with a version calling
pattern, but a procedure it relies on changed in a way that rendered it invalid. Ans
and the generated P : Dp variant cannot be safely used.

In addition to the calling pattern entries, the analysis registry also has an overall status for
each module. If any of a module’s entries are invalid, the overall status is invalid; otherwise
if any of its entries are marked, the overall status is marked; otherwise its status is ok.

Also, if any previously generated variants of calling patterns not in the analysis registry are

104 CHAPTER 7. INTER-MODULE ANALYSIS

affected by a changed answer in another module, the overall status can be changed. We will
see how this can happen in the next section.

The analysis registry serves four distinct purposes.
1. It provides answers for external calling patterns.

2. It indicates which external variants have been generated, and for those that haven’t,
what is the best safe alternative that can be used.

3. It provides a way to mark/invalidate answers.
4. It provides a way to mark/invalidate previously generated variants.

One important point needs to be made regarding the analysis registry: not all exported
procedures need a registry entry. Recall the discussion of perfect calls from Section 5.3.2 —
a perfect call is one with the calling pattern P : T* for which there is only one possible,
or innate answer. Perfect calling patterns do not require a registry entry, for the following

reasons corresponding to the four purposes above.

1. Their answers can be obtained immediately from the available information because

they are innate.

2. Version calling patterns are never needed because the required P : T* variant is always

generated and can always be used without loss of accuracy.

3. Their answers cannot change without changing the procedure (and this case is handled

separately, see Section 7.4.1), and thus need never be marked/invalidated.

4. Marking/invalidation of perfect call variants can be achieved by changing the module’s

overall status.

In the following sections, we will use two notational conveniences. Firstly the arrow —*
will stand for an unmarked, marked, or invalid entry. Secondly, sometimes we will treat all
registry entries as having a version calling pattern. Entries without one can be thought of
as having the form P : Dp =" Ans (P : Dp).

7.3.2 Inter-module Dependency Graph

The inter-module dependency graph (IMDG) is a call dependency graph containing entries
of the form Q" : Do — P" : Dp, where procedure @) exported from module N called with the
calling description Dg calls procedure P exported from module M with calling description
Dp5 1t is used to determine which modules should be marked or invalidated when an
answer is updated. Note that only exported procedures are included and the calls need not
be direct, e.g. Q" : Do may call P! : Dp indirectly via other (exported or non-exported)
procedures in N. For example, all three call graphs in Figure 7.1 would result in the IMDG
entry Q" : Dg — P": Dp (**’ indicates the procedure is exported). The third call graph
would also result in the additional entry R : D — P" : Dp.

5We use the superscripted module name here to distinguish between procedures from different modules
in the same IMDG entry.

7.3. THE HAL APPROACH 105

module N module M

Q : Do* : P: Dp*

Q: Do¥f— R:DR—§>P:DP*

Q : Dg*———> R: Dg* : P: Dp*
Figure 7.1: Inter-module dependency graph I

As for the registry, perfect calls are handled specially. If a perfect calling pattern is on
the right-hand side of a @) : Do — P : Dp dependency, the dependency need not be
recorded. This is because the answer for P : Dp is innate and thus cannot change without
P’s signature changing, in which case the analysis information is reset anyway (see Section
7.4.1). For example, consider the inter-module call graph in Figure 7.2, and imagine we are

performing a simple groundness analysis. The call to p must be a perfect call, since the only

module N module M

q(X::00)* —> p(Y::gg)*

Figure 7.2: Inter-module dependency graph II

possible calling description is T* (Y is ground), and it has an innate answer (Y is ground).
Sono q: Dy — p : {Y} entry need be recorded.

If a perfect calling pattern is on the left-hand side of a @ : Dg — P : Dp dependency,
or “interrupts” a dependency between exported procedures, the recorded dependencies take
the form (N) — P : Dp in which the left-hand side’s calling pattern is anonymous, and
only the calling module is recorded. Consider the two call graphs in Figure 7.3. In the first

module N module M

q(X::gg)* p(Y::00)*

q(X::00)* —— r(Z::gg) —> p(Y::00)*

Figure 7.3: Inter-module dependency graph III

graph, q is a perfect call, and thus does not have a registry entry to mark/invalidate. If the
answer to p changes, the answer to q will not, although any previously generated variant
may be sub-optimal or invalidated. In the second graph r is a non-exported perfect call that
“interrupts” the dependency between the exported procedures q and p; r does not have a

registry entry to mark/invalidate because it is not exported. If the answer to p changes,

106 CHAPTER 7. INTER-MODULE ANALYSIS

the answer to r will not, although any previously generated variant may be sub-optimal or

invalidated.

In both cases, the IMDG dependency has the form (N) — p : D,. If p : Dy’s answer
changes, N’s overall module status entry is updated to indicate that one or more previously

generated variants have been marked/invalidated by a changed answer.5

7.3.3 Recording Information Between Compilations

Both data structures are divided into multiple pieces, one per module. The analysis registry
for the module in M.hal is stored in the file M. reg; it contains the entries for the procedures
exported from that module, as well as a single overall entry indicating whether the module is
ok, marked or invalid. The inter-module dependency graph is stored in the file M. imdg; it lists
the external callers of each of its procedures, i.e. entries of the form Q" : Dg — P": Dp,
rather than the form P" : Dp — Q" : Dg, so that when a calling pattern’s answer is

updated, we can easily find and mark/invalidate its callers.

7.3.4 Treatment of Special Modules

There are two kinds of modules that must be treated differently to ordinary program mod-
ules. The first is the system module, in which HAL built-ins are conceptually defined.
We say “conceptually” because there is no actual system.hal file; the built-ins are imple-
mented using a mixture of Mercury and C code in a file system.m, and system’s interface
file system.hint is composed by hand. There is a system.reg registry file which is also

composed by hand, and which we do not allow to be changed by compilation.

This is feasible because none of the system predicates call predicates from other modules,
so their registry entries need never be marked /invalidated due to answers changing in other
modules. The only shortcoming of making system.reg read-only is that new entries cannot
be added for missing calling patterns — we have chosen to make it the analysis writer’s
responsibility to ensure system. reg contains suitable calling patterns; if any calling patterns
not present occur in a program, the analysis results may be sub-optimal (since the answer
for a less precise calling pattern will be used). We also assume that answers for built-ins
will not change, so there is no need for a system. imdg file.

Library and solver modules also need special handling, but the treatment of their .reg
and . imdg files is not so simple as for the system module. For the moment, we will treat them
like system, and assume they have answers for the calling patterns likely to be encountered.

In Section 7.5.2 we will consider this issue further.

6This overall status marker introduces one further complication — if performing incremental compi-
lation incremental or analysis, when the answer for p : D, in Figure 7.3 changes N’s registry will be
marked/invalidated, but there won’t be a direct record of which external calling pattern caused the mark-
ing/invalidation, which will preclude incremental compilation/analysis of that module. The solution is to
augment the module’s overall status with the calling patterns of the external procedures with changed an-
swers (in this case p : Dp). This information, when combined with other information that is required for
incremental compilation/analysis, would suffice.

7.4. COMPILING A SINGLE MODULE 107

7.4 Compiling a Single Module

When compiling a module M, several steps must be performed. These are interleaved with

the operations of the analysis framework. The steps are as follows.
1. Decide the initial set of calling patterns S to analyse.
2. Find an answer for an external call when Aexternal_proc is called.
3. Update the analysis registry.
4. Update the inter-module dependency graph.

5. Generate code for all necessary variants, such that each procedure call is made to the

most specialised variant possible.

The following sections describe each of these steps in detail. For the moment we will assume
that there are no procedure-level cyclic inter-module dependencies; that case is dealt with

in Section 7.5.1.

7.4.1 Deciding Initial Contexts

If module M has been compiled before, has not changed since its last compilation, has no
marked or invalidated entries, and its overall registry status is neither marked nor invalid, it
does not need to be recompiled. Otherwise, we must decide the initial set of calling patterns

S to analyse, as follows.

if (M.hal has changed since last compiled) or (M.reg is marked or invalid)
foreach procedure P exported from M
foreach (P : Dp —" _ (1)) in M’s registry
add P: Dp to S
add P: T*to S
analyse(S)
else

halt compilation

If the file needs analysis, we look at each exported procedure, and add the calling patterns
for any entries in M.reg to S.” We also add P : T* for each procedure (if already in S, it
is not added twice). Note that for a procedure’s M.reg entry to be added, its type, mode,
determinism and number of arguments must exactly match an exported procedure in the
source .hal file. Any entries for procedures that no longer exist are removed at this time.®

Finally we call analyse, the entry function of the analysis framework.

“If performing incremental compilation or analysis, the compiler would only add those calling patterns
with marked/invalidated answers or sub-optimal/invalidated previously generated variants, and any other
calling patterns affected by these. This is not currently done since the HAL compiler does not do incremental
compilation but generates code for all procedures in a module, thus requiring analysis information for all
procedures.

8This may still leave behind unused contexts, from intermediate analysis results or from modules that
are no longer of interest. A global step for removing these might be useful if the number of them becomes
a problem.

108 CHAPTER 7. INTER-MODULE ANALYSIS

7.4.2 Obtaining External Answers

When a call to external procedure @) defined in module N is encountered, instances of Aex-
ternal_proc can call the function get_ext_answer to obtain an answer. If so, they must
provide a function glb for computing the greatest lower bound of two answers, and a pred-
icate is_more_precise that determines if its first argument is strictly more precise than its

second. The file N.reg is read into memory if it has not already been.

get_ext_answer(() : Dg)
if (there is a valid entry @ : Dg —° Ans (_) in N’s registry)
return Ans
else
Dpest :=T%; AnSpest == T%; Ansgyp :=T*
foreach valid entry @ : D, =7 Ans' (Q : Dg) in W’s registry
if is_more_precise(Dg, Dy,)
Ans g := glb(Ans g, Ans')
if is_more_precise(Ans’, Anspest)
Dyest := D
AnsSpest := Ans'
if (N is not a library/system module)
add @ : Dg —* Ansgp (Q : Dpest) to N’s registry

return Ansgy

If there is a valid entry that exactly matches the calling pattern, we return its answer.
If there are no exactly matching entries, we consider all the entries in the analysis registry
whose calling descriptions are strictly less precise than Dg. As an answer we use the greatest
lower bound of the answer descriptions of such entries. Because there is no variant for the
requested calling pattern, we must find a version call pattern for a procedure that is safe to
use; of the safe matches, we choose the one with the most precise answer description. When
it comes to code generation, any call to () : Dg can safely use @) : Dpese. Finally, we add a
marked entry to the registry, which ensures () : Dy will be analysed next time N is compiled.

It is worth noting that [6] suggests that if the analysis domain is downwards closed, the
calling description Dg could be included in the greatest lower bound of all the inexactly
matching answer descriptions. While this would result in a more accurate answer, in the
end it will make no difference, because the answer description will be immediately combined
with the call’s pre-description which subsumes the information in Dg.

7.4.3 Updating the Analysis Registry

Once analysis is complete, we update M’s registry. This may also require the marking of

multiple other modules’ registries, if they rely on procedures from M.

foreach P": Dp in S
if (there exists an entry P": Dp =7 Ans,iq (P": D)) in M’s registry)

let Anspew := answer for P! : Dp in answer table

7.4. COMPILING A SINGLE MODULE 109

if (Anspew # Ansoa) or (Dp # Dp)
replace the entry with P": Dp — Ans,., in M’s registry
if is_more_precise(Anspew, Ansoq)

Status := o
else
Status := L

foreach entry Q" : Dy — P": Dp in W’s IMDG
if (module N is not a library/system module)
mark Q" : Do + _ (_) with Status in N’s registry
foreach entry (N) — P": Dp in M's IMDG
if (module N is not a library/system module)
update N’s registry’s overall status with Status
elseif (P": Dp is not a perfect call)
insert P": Dp — Anspew in M’s registry

For each calling pattern in S, if it had an old entry in M’s registry we compare the new
answer against the old. If the answer is the same, we don’t need to do anything else. If the
answer has changed, we replace the entry and change the status of all the procedures from
other modules that call P" : Dp. If the new answer is strictly more precise or the entry
has a version calling pattern (i.e. no specific variant has been generated for it before) we
mark dependent entries; if it’s strictly less precise or incomparable, we invalidate dependent
entries. When marking/invalidating an individual entry with Status, we also update the
overall marking of that module’s registry by taking the least upper bound of the old status
and the new Status, where the ordering is ok C marked C invalid. This is also how the overall
status is updated when handling anonymous entries. Note that each dependent module’s
registry and IMDG are read from file if not already present in memory.

If there was no old answer, and the call is not perfect, we can insert the new answer
(perfect calling patterns will never have an old answer); we don’t need to worry about
marking other modules — there cannot be any external callers of this calling pattern (or
none encountered via the compilations performed so far), otherwise we would have at least
one registry entry for it.

9

M’s registry may have “legacy” entries in it, for calling patterns that are no longer en-
countered. Such entries can be removed at this point, as long as they are not of the form
P : T* — we must always have that entry and generate that variant, even if it’s not currently

used, so that other modules can use it in the future if necessary.

7.4.4 Updating the Inter-module Dependencies

We must also update the inter-module dependency graphs of all modules that M calls. This
ensures that when answers from those modules change, M.reg can be marked/invalidated

appropriately.

foreach module N imported by M

if (module N is not a library/system module)

110 CHAPTER 7. INTER-MODULE ANALYSIS

delete all entries of the form P":_— _and (M) — _in N’s IMDG
foreach P": Dp in S
foreach non-perfect Q" : D¢ reachable from P": Dp
if (P": Dp is a perfect call) or (the P": Dp — Q" : Dg dependency
is “interrupted” by a perfect call)
add (M) — Q" : Dg to N’s IMDG
else

add P": Dp — Q" : Dg to N’s IMDG

For all modules imported by M, we remove any old IMDG entries of the form P": _ — _or
(M) — _, and replace them with new entries for all calling patterns reachable from M.

Finding the reachable calling patterns is a non-trivial exercise. The inter-module call
graph is computed by compute_call_graph (see Section 4.3) once analysis is completed. It is
then transitively closed and non-exported procedures are removed. The reachable calling
patterns of a module can then be easily extracted.

There is one minor difficulty when updating the inter-module dependency graph. If M
used to import module N and call one of its procedures, but no longer does, N. imdg will have
one or more entries of the form P! : Dp — Q" : Dg in it, and these won’t be removed using
the algorithm above. Then if the answer to Q" : Dg changes in the future, the registry entry
for P": Dp will be marked/invalidated even though P no longer relies on @. This problem
can simply be ignored — it should occur rarely, and when it does it will only result in some
unnecessary compilations without compromising correctness. This is the approach used by
the current implementation. Alternatively, the above algorithm could be changed to process
every .imdg file in the program rather than just the ones imported by N. Or the modules
imported by M could be stored in M. imdg and if any are removed between compilations, all

entries of the form P" : Dp — _ could be removed from their .imdg files.

7.4.5 Generating Code

Now we must generate code for all the variants encountered during analysis. Only domains
whose information can be used to optimise constraints require multi-variant specialisation,
such as Freeness™ (see Chapter 5). By contrast, determinism analysis (see Chapter 6) does
not. The following description is for multi-variant specialisation without any restriction on
the number of variants generated. Techniques for reducing the number of variants are
discussed in Section 7.10.

The HAL compiler uses name mangling to differentiate between different variants. To
support this, each abstract domain for which multi-variant specialisation is performed must
provide an injective function desc_to_string that converts an abstract description to a string.
The strings for each abstract domain the procedure is being specialised for are concatenated
and used as a suffix.

The three tasks relating to multi-variant specialisation during code generation are as

follows.

1. Determine which variants to generate.

7.4. COMPILING A SINGLE MODULE 111

2. Specialise each procedure call and higher-order unification to use the best possible

variant.

3. Optimise “constraints” according to annotations.

Determining the variants: After analysis, all variants encountered are recorded by com-
pute_call_graph (Section 4.3). The first step during code generation is to determine the names

of the variants to be generated.

foreach P in module M
foreach combination Ds of calling descriptions, one per analysis domain

generate code for the variant named local_variant_name(P, Ds)

local_variant_name(P, Ds)
Suffix :=""
foreach Dp in Ds
Suffiz .= Suffix ++ desc_to_suffix(Dp)
return Suffix

desc_to_suffix(Dp)

if (Dp = T%)
return ""
else

return desc_to_string(Dp)

There is one complication when generating variant names: if the calling description is T*,
we do not use any suffix; this corresponds to the “default” variant. The main reason for this
is that it allows modules that have undergone multi-variant specialisation to be linked with
modules that have not.

For example, if generating the variants for a procedure p for which the encountered
calling descriptions were T% and D4 from analysis domain A, and T} and Dp from analysis
domain B, where the strings returned by desc_to_string for D4 and Dp are "_dA" and "_dB"

respectively, we will generate four variants with the following names:

local_variant_name ("p", [T%, T%]) = "p"
local_variant_name ("p", [T%, Dp]) = "p_dB"
local_variant_name ("p", [Da, TH]) = "p_dA"
local_variant_name ("p", [Da, Dg]) = "p_dA_dB"

Specialising procedure calls: When a procedure call P (local or external) is encoun-
tered, we inspect its annotations to determine Ds, its calling descriptions for all relevant
analysis domains. If P is local we can simply convert each description to a suffix using
local_variant_name — we know that the appropriate variant will be generated, because
it must have been encountered during analysis. If P is external, the exact variant may not

have been generated — this is where the version calling pattern is used.

112 CHAPTER 7. INTER-MODULE ANALYSIS

external_variant_name(P, Ds)
Suffiz :=""
foreach Dp in Ds
if (there exists a valid entry P : Dp —’ _in M.reg)
Suffiz .= Suffix ++ desc_to_suffix(Dp)
elseif (there exists a valid entry P : Dp +’ _ (P : D}) in M.reg)
Suffiz := Suffiz ++ desc_to_suffix(Dp)

return Suffiz

We use the best safe variant possible, as indicated by the version calling pattern P : Dp. If
a local call was unreached during analysis, it will have no annotations, so Ds will be empty
and the empty suffix will be used. There will always be an entry for an external calling
pattern P : Dp, as it must have been added when the call was encountered during analysis.

Higher-order unifications are treated similarly so that the closure created uses the best

safe variant possible.

Optimising constraints: When an optimisable constraint is encountered, we inspect its
annotations to determine if it can be improved. For example, when performing the freeness
optimisations discussed in Section 5.2.3, if the literal is a unify_oo and the annotations

indicate that both its arguments are free, we replace it with unify_var_var.

7.4.6 Creating An Executable

Any modules containing invalid entries must be recompiled; once all modules are valid, the
generated code files can be linked together into an executable (i.e. passed to the Mercury

compiler). If no modules are marked, the executable created will be optimal.

7.4.7 An Example

We are now ready to put everything together with an example. Although the compilation
model has a lot of details, in practice the workings are quite straightforward. Consider a

simple groundness analysis of a program consisting of the following two modules:

:— module m_app.
:- herbrand list/1.

:— export pred p(list(int)::o00, list(int)::00) is nondet.
p(X, Y) :- app([4,5,6], X, Y).

:— export pred app(list(T)::00, 1ist(T)::00, 1list(T)::00) is nondet <= eq(T).
app(l1, _,).
app([X | Xs], ¥Ys, [X | Zs]) :-

app(Xs, Ys, Zs).

7.4. COMPILING A SINGLE MODULE 113

:- module m_app_caller.
:— import m_app.
:- herbrand list/1.

:— export pred app_caller is nondet.
app_caller :- app([1], [2,3], [1,2,3]).

The “<= eq(T)” annotation on app/3 indicates that the elements of its arguments must be
members of the eq type class, which means that they support being tested for equality.
Rather than using head variables in the descriptions, we will use the numbers 1, 2 and
3 to represent the first, second and third argument of each procedure respectively. Also, we
assume the suffixes generated by desc_to_suffix are of the form “_GiGjGk” if the variables

i, j and k are ground.

Compile m_app: We begin with no .reg or .imdg files. Let us arbitrarily choose to
compile m_app first. The initial set S contains only default entries for p : T* and app : T*

(where T* =)). The compilation generates m_app.reg.

m_app.reg
Status = ok
P 0 — 0
app: 0 — 0
app : {1} ~ {1}

The entry for app : {1} arises from the app([4,5,6], X, Y) call. No m_app.imdg is
generated as yet. The variants generated are p, app and app_G1l. The app_G1 variant
will be more optimised than app, since its first argument is known to be ground.

Compile m_app_caller: The initial set S contains only the default entry app_caller: T*
(where T* =). There is no m_app_caller.reg generated because app_caller is a perfect

call and does not require a registry entry. The compilation updates m_app.reg and generates

m_app . imdg.
m_app.reg m_app.imdg
Status = marked (m_app_caller) — app: {1,2,3}

P 0 —)
app: 0 0
app: {1} = {1}
app : {1,2,3} —* {1} (app: {1})

The previously unseen calling pattern app : {1, 2,3} from the app([1],[2,3],[1,2,3]) call
is added to m_app.reg and marked (this marks the overall status too). For its answer we use

the greatest lower bound of the answers of all existing app entries with less precise calling

114 CHAPTER 7. INTER-MODULE ANALYSIS

descriptions (in this case app : {1} — {1} and app : § — 0).® Of these entries, we use the
calling pattern of the one with the best answer (app : {1}) as the version calling pattern.
The generated code for app_caller calls app_G1, the most highly optimised existing safe
variant of app that it can.

The compiled modules could now be linked together into a sub-optimal executable; but
to obtain an optimal executable, we must do some recompilations. Since m_app.reg’s overall

status is marked we should recompile it next.

Recompile m_app: This time the initial set S contains the four entries from m_app.reg.

Recompiling updates m_app.reg and generates a new m_app_caller.reg.

m_app.reg m_app_caller.reg
Status = ok Status = marked
P 0 — 0
app: 0 — 0
app: {1} {1}
app : {1,2,3} — {1,2,3}

When m_app.reg is updated, the marked entry for app : {1,2,3} is unmarked, its an-
swer updated, and its version calling pattern removed. We then look in m_app.imdg to
determine which other modules are affected. The only entry in m_app.imdg has the form
(m_app_caller) — app : {1,2,3} which matches the calling pattern, so we change the
overall status of m_app_caller’s registry to marked, creating the m_app_caller.reg file
in the process. This indicates that the generated code for m_app_caller is still safe, but
recompilation could improve it. The following variants are generated: p, app, app_G1 and
app_G1G2G3.

Again, the compiled modules could be linked together into a sub-optimal executable —
although the variant app_G1G2G3 has been generated, m_app_caller needs to be recompiled
to actually use it.

Recompile m_app_caller: The initial set S again only contains the default app_caller:

T* entry. The recompilation changes m_app_caller.reg.

m_app_caller.reg
Status = ok

The code for app_caller can now call the most optimal variant of app, app_G1G2G3, and
m_app_caller.reg is marked as ok.!°

No modules are marked or invalid, so the compiled modules can now be linked together
to create the optimal executable. Note that if we had compiled m_app_caller first, the

optimal executable could have been made with only three compilations.

9As mentioned in Section 7.4.2, because groundness is downwards closed, we could include the calling
description in the greatest lower bound computation, in which case we would obtain the better answer
{1,2,3}. However, this would not improve the analysis since the answer will be combined with the calling
description immediately.

10The file m_app_caller.reg could be deleted at this point.

7.5. COMPLICATIONS 115

7.4.8 Use and Update of .reg and .imdg Files

The actions that accompany compilation of a single module can be quite complex; it is thus
worthwhile to provide an overview. Assume we have three modules L, M and N, and that L

imports M, and M imports N, as shown in Figure 7.4.

Figure 7.4: Dependencies between modules L, M and N
When compiling module M, the .reg and .imdg files are used as follows.

e L.reg, L.imdg and N.imdg: not used.

e M.reg: used to determine the initial set of calling patterns S.

M.imdg: used to determine which variants in L are affected by answer changes in M.

N.reg: used during analysis for finding exact or approximate answers for external calls.

Also used during code generation to determine which of N’s variants M’s procedures

can use.
The changes made to the .reg and .imdg files are as follows.
e L.imdg and M.imdg: not changed.

e L.reg: entries are marked or invalidated if they rely on calling patterns from M whose

answers have changed.

M.reg: marked/invalid entries are replaced with unmarked ones. Procedures missing

entries have one added for the calling pattern P : T*.
e N.reg: missing entries are added and marked.

N.imdg: old entries of the form P! : Dp — Q" : Dg and (M) — Q" : D¢ are removed

and replaced with new entries.

It is clear that the use and update of each module’s .reg and . imdg files are quite indepen-
dent.

7.5 Complications

There are two complications that have been avoided so far: the handling of invalid entries
when cyclic dependencies are present in the program call graph, and the treatment of library

and solver modules. We discuss them in this section.

116 CHAPTER 7. INTER-MODULE ANALYSIS

7.5.1 Cyclic Dependencies

If there are procedure-level cyclic inter-module dependencies in the program’s call graph,
care must be taken when recompiling modules so that invalid information is not incorrectly
used to obtain new answers. The danger is that we might indirectly use an invalid old answer
for a calling pattern to support its new answer.

When an inter-module cycle has one or more registry entries invalidated, the simplest
solution is to throw away all possibly invalid information. For each P : Dp entry in the
strongly connected component (SCC) containing the invalid entry, we reset the entry to
P:Dp—*T*

For example, consider the cycle in Figure 7.5. Assume the cyclic inter-module depen-
dency is at a procedure level, and that an answer changes in P, invalidating an entry in N.
We would then reset all entries in L, M, and N to P : Dp —* T*. Any module in the SCC

can now be safely recompiled.

Figure 7.5: A cyclic inter-module dependency graph

Unfortunately, this simple approach may lead to more recompilation than necessary. A
better approach is to choose one module with which to break the SCC; registry entries from
other modules within the SCC that it depends on are reset as above. Once this is done, that
module can then be safely recompiled, as it will not be relying on any invalid information
within the SCC. The other modules can then be recompiled in turn.

For example, again consider the cycle in Figure 7.5, and again assume an answer in P
changes, invalidating an entry in N. We can break the cycle at module N by resetting all
the entries it depends on within the SCC (those in L) to P : Dp +* T*. N can then be
recompiled safely, followed by M, L and K (if necessary).

Note that SCCs can be computed fairly straightforwardly using the dependency infor-

mation already present in the .imdg files.

7.5.2 Library and Solver Modules

There are several problems when dealing with library modules.

e Normal modules have the rest of the program to provide calling contexts. Library and

solver modules do not. How should appropriate entries be added to the .reg file?

e Library and solver modules may be used by many different programs. If the calling
pattern of every procedure that calls the library/solver module is added, the .imdg

file may grow very large.

7.5. COMPLICATIONS 117

e Library/solver modules are not likely to be recompiled very often, if at all.

Let us consider two possible solutions.

Treat like the system module: We could treat the library/solver module like the sys-
tem module, by making the module’s .reg file read-only, and not having a .imdg file. A

declaration such as
:- library_module <module_name>.

could be used to flag a module as being a library or solver module. The appropriate entries
could be added to the .reg file by hand. If this is difficult, we could instead follow these
steps to generate it semi-automatically.

1. Write the library module without the library_module declaration.
2. Write a driver program that calls all the appropriate calling patterns.

3. Compile the driver program so that appropriate entries are added to the library mod-

ule’s .reg file.

4. Compile the library module so that answers are obtained and variants generated for

the appropriate calling patterns.

5. Add the library_module declaration to the library.

The library is now ready to be used like the system module.

This approach would avoid the overfull .imdg problem, although if the answer for any
calling patterns changed, there would be no way to determine which modules would be
affected. The module also would never require recompilation as long as it didn’t change.
This solution would be most suitable for highly stable libraries.

Make local .reg and .imdg copies: Another possibility would be to create a local
copy of the module’s .reg and .imdg files for each program, and it could then be used
like a normal program module. Missing calling patterns could be added easily, and local
copies of the compiled module containing only the variants used would be generated. The
library/solver module would need to be compiled once or more per program, unlike the
previous approach. This solution would be most suitable for library/solver modules with
procedures that might have many different calling patterns, which are used in very different

ways by different programs.

Current approach: Neither of the suggested approaches have actually been tried. This
is because the only analyses implemented so far are Herbrand analyses (see Chapter 5).
None of the procedures in HAL’s standard library use old modes, so they all have perfect
answers, which means .reg and .imdg files are not needed!

Once other analyses are written, the two approaches above and others can be tried.
Determining the best approach, the best situation for each approach, or the best combination

of approaches, is clearly an area for further work.

118 CHAPTER 7. INTER-MODULE ANALYSIS

7.6 Correctness and Accuracy

The correctness of the described approach is quite obvious in the absence of invalidated
entries — the answers used for inter-module calls proceed downwards from T*, becoming
increasingly more accurate, until we reach a fixpoint.

The approach’s correctness when invalidated answers are involved is less obvious, but
can be established by the following intuitive arguments that show we never use invalid

information or invalid variants.

e We forbid the creation of an executable when any of its constituent modules have

invalid registry entries.

e Invalid answers are never directly used — if an entry is invalidated, we instead use T*

as its answer.

e When an answer changes in a way that may compromise the correctness of the modules
that depend on it (i.e. it is strictly less precise or incomparable with the old answer),

we invalidate all entries that directly rely on it.

e When a module is invalid, any module that (directly or indirectly) depends on it may
also be invalid. In the absence of procedure-level cyclic inter-module dependencies,
this will be all modules “above” the invalid module in the inter-module dependency
graph. Recompiling this “bottom” invalid module will re-validate it (it does not rely
on any invalid information), although when recompiled one or more of its answers
may change, which will spread the invalidation to its calling modules. The newly
invalidated modules can then also be recompiled and re-validated. The invalidation

propagation will eventually cease, whereupon a correct executable can be created.

e If cyclic dependencies are present, to recover a valid state we choose one module with
which to break each cycle; the invalid entries within the cycle that it depends on are
then “reset” and the chosen module can be recompiled safely, as it no longer depends

on any invalid information from within the cycle.

There is one further simple but important point required for correctness. If a module has
any compilation errors, analysis is skipped. This ensures the registry and inter-module
dependency graph cannot be polluted with incorrect information.

Now let us consider accuracy. Note that the fixpoint found by this technique is not
the global greatest fixpoint, but much more accurate than that. It is instead a mix of least
fixpoint information from intra-module analysis and greatest fixpoint information from inter-
module analysis. In general, it is not as accurate as a method that finds the global least
fixpoint. However, unless there are procedure-level cyclic inter-module dependencies present
in a program, the fixpoint found will be equal to the global least fixpoint. One could argue
that the presence of such dependencies is indicative of poor modular structure, and should
be avoided anyway. We feel the advantage of our technique — being able to create a safe
executable after only compiling each module once — outweighs the occasional accuracy

shortcomings.

7.7. EFFICIENCY CONSIDERATIONS 119

7.7 Efficiency Considerations

The analysis registry and inter-module dependency graph are accessed and updated in many
different ways throughout compilation, which makes it difficult to identify what is the most
appropriate structure for them, both in memory and on disk.

The data structures used in the implementation are as follows. Analysis registry entries
are addressed via four levels of indexing: by module, then domain, then procedure, then
calling description. This representation is used both in memory and in the .reg files. Of
course, on disk the primary indexing by module is achieved by storing each module’s registry
in its own file.

Only one module’s IMDG needs to be in memory at any time. This is because the IMDG
of the module being compiled is used when updating the analysis registry, and the IMDGs
of all called modules are updated one at a time at the end of the different domain analyses.
Each module’s IMDG has two levels of indexing: by domain, then calling module. Each
calling pattern is then paired with a list of its callers from the calling module — this list
may be empty if all the callers are anonymous.

However, it seems that the exact form of the registry and IMDG in memory is not very
important, simply because the number of entries is generally quite small — a typical module
exports only a handful of procedures, or even only one. By not storing perfect calls, the
number of entries is reduced even further.

Processing times are dominated by the time taken to read and write .reg and .imdg

files. The implementation has three features to reduce the amount of reading and writing.

e The registry and inter-module dependency graphs are broken into pieces, one per
module. At first, we stored a module’s registry and IMDG together in a single .info
file. Once it was recognised that a module’s .reg and .imdg are often used (i.e. read
from disk) and updated (i.e. written to disk) independently (see Section 7.4.8), the
decision was made to use separate .reg and .imdg files. The increased number of files
opened and closed is outweighed by the time saved by avoiding reading and writing

unnecessary bytes.

e Each .reg and .imdg file is only read into memory when necessary. This minimises the
memory required to store the structures. Also, .reg and .imdg files are only written

out to disk again if they have changed, to minimise write times.

e The overall status of each module’s registry is stored at the very start of its .reg file,

where it can be quickly accessed. The use of this is described in the next section.

7.8 Controlling Compilation

Let us now consider the order in which modules should be compiled under this compilation
model, how to determine if an executable can be created, and if so, whether the executable
will be optimal.

If the modules of a program are not edited, they can be compiled in any order and any

number of times, and then be linked together to create a valid executable. However, the only

120 CHAPTER 7. INTER-MODULE ANALYSIS

way to determine whether an executable is optimal is by checking that all registry entries

are not marked.

If any module is edited, registry entries may be invalidated. An executable cannot be
created if any modules have been invalidated. The only way to determine this is by checking

that no registry entries are invalid.

If there are invalid entries combined with cyclic dependencies, the cycle must be identified

and broken in the manner described in Section 7.5.1.

With the current implementation, these three tasks must be performed manually by the
programmer. The long-term plan is for HAL to have some kind of overarching build tool
(such as Mercury’s mmake [21], based on make [15]) to control these tasks automatically. Like
mmake and other build tools, it should recompile modules that have changed. It should also
perform the three tasks described above. The first two can be achieved easily by looking
at the overall status in each .reg file of the program’s modules. The third would be more
involved, but since the necessary dependency information is already present in .imdg files,

identifying and breaking cycles should be relatively straightforward.

When developing a program, it is likely that a programmer will need to create a fully
optimised executable — which may require each module to be compiled more than once —
comparatively rarely. Thus, control over the compilation speed vs. inter-module optimisa-
tion level trade-off would be useful. It would also be useful for a build tool to attempt to
minimise the number of recompilations by using analysis information present in the .reg

and .imdg files.

This is only intended as a brief discussion of the features that a build tool would need; the
interaction between HAL’s inter-module analysis system is a topic deserving much further

work.

7.9 Experimental Evaluation

This compilation model was designed for analysing large multi-module HAL programs. Cur-
rently, the only such program is the HAL compiler itself. However, it is not suitable for
analysis by the Herbrand analyses implemented so far, since the small number of procedures
it uses with old instantiations are not exported from their modules — hence no .reg or

.imdg files would need to be written.

As an alternative, we took a single-module HAL program that uses Herbrand constraint
solving extensively, icomp, a cut-down version of an interactive BIM compiler by Bart De-
moen, and split it into multiple modules in three different ways to evaluate different aspects
of the model — the time required to compile a multi-module program, the effect of the
module structure on the number of compilations required to reach the fixpoint, and the
effect of procedure-level cyclic inter-module dependencies on accuracy.

Note that this is only a preliminary evaluation, although the results are encouraging.
When multi-module programs that require full inter-module analysis and optimisation are

written, a more thorough evaluation should be done to further assess the technique.

7.9. EXPERIMENTAL EVALUATION 121

7.9.1 Cost of Compilation

For the first experiment, we split icomp into five modules in a logical fashion that minimised
the size of interfaces (each module exported only one procedure). There are five strongly
connected components containing more than one procedure in icomp; four of them contain
two procedures, and one contains four procedures. No strongly connected components were

split across modules. The module structure is shown in Figure 7.6.

main

vars head body gen

Figure 7.6: A logical module structure for icomp

The compilation order chosen was that mentioned at the end of Section 7.4.7 — calling
contexts were found and propagated top-down through the inter-module call graph and
then missing answers were filled in bottom-up; this was repeated until the fixpoint was
reached. This gave the order main, vars, head, body, gen, body, main, vars, head, body,
gen, body, main, for a total of thirteen compilations.

The analysis and compilation times for each compilation were compared with the times
for analysis and compilation of the original single-module version of icomp. The experiments
were performed under the same conditions as those in Section 5.6.1.

The times results are shown in Table 7.1. Column two and three give the number of
predicates and literals (before normalisation) of each module. Column four gives the time
for Freeness™” analysis. Column five gives the overall compilation time. Column six gives
the proportion of compile time taken up by Freeness™" analysis. The first row gives the
result for the single-module icomp.!! The remaining rows give the times for the compilation
of each module when computing the inter-module analysis fixpoint.

The second and subsequent, compilations of each module each took longer than the first
compilation, due to the extra calling patterns analysed. The figure of 50430 ms for full
compilation of the modularised version is 3.9 times greater than 13030 ms for the single-
module version, even though only a little more than twice as much code is compiled. This
is largely due to the reading and writing of interface files and the compilation of extra
variants. On the other hand, the overall analysis time of 16180 ms is only 2.7 times greater
than the 6000 ms for the single-module version. This difference reduces the analysis time
proportion down from 46.0% for the single-module version to 32.1%. The accuracy of the
analysis is identical to the single-module version, because there are no procedure level cyclic
inter-module dependencies. However, unnecessary P : T* variants were generated for the

single procedure exported from each of vars, head, body and gen.

I The result is slightly different from that in Table 5.4 because this version contained an extra predicate
containing a query.

122 CHAPTER 7. INTER-MODULE ANALYSIS

| Module | Preds Lits | F All | Prop |
icomp 31 120 | 6000 13030 | 46.0%
main 3 16 210 2630 8%
head 6 18 650 2740 23%
vars 5 15 400 1640 24%
body 12 52 | 1100 4010 27%
gen 5 19 | 1570 4300 36%
body 1310 4170 31%
main 280 2790 10%
head 930 3290 33%
vars 510 1860 27%
body 2260 5900 38%
gen 1700 4490 37%
body 2270 5810 39%
main 270 2650 10%
Total/ Average 16180 50430 | 32.1%

Table 7.1: Multi-module analysis times (ms)

These results do not hold any great surprises, but they do support our claims that the

compilation model is practical.

7.9.2 Effect of Module Structure

For the second experiment, we split icomp into four modules in a totally random fashion.
The only restriction was that we did not split any strongly connected components across
modules. Every module called at least one procedure from every other, which meant that
24 of the program’s 31 predicates had to be exported from their module.

The most significant effect of this random module structure was the high number of
compilations required to reach the fixpoint — both module compilation orders attempted
required thirty compilations to do so. A number of unnecessary variants were also generated
to reach the fixpoint. This indicates that the model’s behaviour does degrade in the presence
of unclean module structure, however the effect is not overwhelming, especially considering
that this is a pathological case and in practice module structures are not nearly so random.

Also, icomp is unusual in that it contains no perfect calls to hasten the fixpoint computation.

7.9.3 Effect of Cyclic Dependencies

In our third experiment, we kept all procedures in a single module except for those involved
in strongly connected components of size greater than one; the procedures in these SCCs
were split across different modules.

The effect on accuracy was as expected. While the answers for some calling patterns
from the SCCs containing more than one procedure were the same, every such SCC had at
least one answer that was less accurate than that obtained for the single-module version.
The differences in answers were fairly minor, mostly being that the multi-module version

answers had more sharing pairs than the single module version answers.

7.10. CONCLUSION 123

7.10 Conclusion

The compilation model used by HAL for inter-module analysis and optimisation, based
on finding the greatest fixpoint of inter-module analysis information, is both practical and
accurate, and more satisfactory than a number of other approaches used by other program-
ming language implementations. It solves the two main problems of inter-module analysis

described in Section 7.1.

1. The unknown answers problem is solved by storing calling pattern answers in the
analysis registry, in the form of .reg files. When an answer is obtained for a calling
pattern, the registry is updated. Answers can be marked or invalidated to indicate

that they are sub-optimal or no longer safe.

2. The unknown contexts problem is solved by using T* as the default calling pattern,
and then allowing modules to mark the registries of other modules (in effect “telling”
them) when a new calling context is encountered. Once an answer is obtained for
the new context, the module containing the procedure notifies the calling module by

marking its registry.

The compilation model also supports multi-variant specialisation, by providing version call-
ing patterns that indicate whether specific variants exist, and if not, the best variants that
can be safely used instead.

The implementation described in this chapter differs somewhat from the original version
of the compilation model presented described in [6]. The main differences are: it sup-
ports perfect calls; provides more detail about the storage and handling of the registry and
inter-module dependency graph; provides more algorithmic detail; and considers the special
treatment of system, library and solver modules. These differences mostly arise because this
is a description of a specific implementation, rather than a general presentation.

One topic we have not considered is the number of variants generated per procedure
by multi-variant specialisation. If there are too many, the number could be restricted to
the P : T* variant plus a limited number of more specialised variants. This could be done
by using unmarked registry entries of the form P : Dp +— Ans (P : Dp) (which were not
considered in Section 7.3.1). In this case, any call to P : Dp would actually use the variant
P : Dp; however, because the entry is not marked, the more specialised P : Dp variant
would not be generated when the module containing P was recompiled.

Similarly, different variants of a procedure may have identical code if their calling de-
scriptions are similar. While this has not been a problem in our experience thus far, it may
become an issue for different abstract domains. It might be worth investigating ways to
identify variants that are equivalent from an optimisation point of view and then “collapse”
them together in a similar way to the variant capping described above (as in e.g. [51, 36]).

The preliminary experimental evaluation showed that the model is quite practical, and
that while its performance does degrade as module structures become messier, the effect
is not overwhelming and unlikely to be a problem in practice. Once suitable multi-module
programs are written, the model should be evaluated more thoroughly to identify possible

improvements.

124 CHAPTER 7. INTER-MODULE ANALYSIS

Finally, we have identified two important areas for further work. The first is the testing
of different approaches to handling library and solver modules. The second and more im-
portant task is the development of a proper build tool to automate compilation; as well as
the standard make-like tasks of recompiling changed modules, it should be able to recognise
whether further compilation could result in a more optimised executable, identify invalidated
modules that need to be recompiled, and be able to break invalid cyclic inter-module depen-
dencies. Once these two shortcomings are addressed, this compilation model should provide

all the necessary support for practical and accurate inter-module analysis and optimisation.

Chapter 8

Conclusion

In this thesis we have presented the HAL compiler’s generic analysis framework. In Chapter
3 we gave it a solid theoretical foundation by defining semantics for top-down and bottom-up
analysis. In Chapter 4 we described in detail how the framework accommodates different
analysis domains, and the algorithm and data structures it uses to efficiently compute a
module’s least analysis fixpoint. In Chapter 5 we defined three analyses for optimisation —
groundness, sharing and freeness. We also described and evaluated the Herbrand constraint
solving optimisations made possible by the gathered analysis information. In Chapter 6
we described HAL’s determinism analysis, an analysis for correctness that also allows the
use of more efficient execution algorithms for procedures that are deterministic or semi-
deterministic. Finally in Chapter 7 we presented the compilation model used in the HAL
compiler that allows accurate inter-module analysis in the presence of separate compilation.

Let us consider how well we have achieved the goals we set ourselves in Chapter 1.

A clear justification of the form of the framework. In Section 3.1, we identified neces-
sary and desirable analyses for HAL, and decided that a generic abstract interpretation-
based framework capable of performing top-down and bottom-up analyses was most

appropriate for HAL.

e A sound theoretical basis for the framework. Section 3.3 introduced abstract interpre-

tation, and defined top-down and bottom-up semantics for the framework.

o A comprehensive description of the implementation of the framework. Chapter 4 thor-
oughly described the data structures and operations of the framework, including de-
tailed pseudocode of its main algorithm.

e Detailed descriptions of analyses implemented within the framework, and any enabled
optimisations. Chapter 5 described in detail groundness, sharing and freeness analyses,
and the optimisation of Herbrand constraint solving. Chapter 6 described determinism

analysis, and briefly covered the improved execution algorithms it enables.

o Empirical evaluation of the costs and benefits of these analyses. Chapters 5 and 6

provided experimental results for both the cost and benefits of these analyses.

125

126 CHAPTER 8. CONCLUSION

We also identified several awkward details for our presentation to tackle.

e Analysis of full programs, without any restrictions on language features used. The
framework handles full HAL programs containing arbitrarily nested compound bodies
including explicit disjunctions and if-then-elses. Advanced language features such as
dynamic scheduling and constraint handling rules did not require special treatment,
since they are transformed into ordinary language constructs before the framework is

invoked.

e The use of higher-order programming. Higher-order unifications and calls were consid-
ered throughout; for example, procedures only reachable through higher-order calls are
recognised and analysed by the framework. Unfortunately, accurate analysis of pro-
grams that use higher-order is intrinsically difficult. For example, often the predicate
called via a higher-order argument cannot be determined at compile-time. Our ap-
proach was pragmatic; we used what information we could (e.g. by keeping downwards
closed information from higher-order unifications), but did not go to great lengths to

improve upon this.

e Practical and accurate inter-module analysis. This goal was very nearly achieved in
full. The compilation model described in Chapter 7 is as accurate as a global analysis
in the absence of procedure-level cyclic inter-module dependencies, which should be

rare.

The model has the potential to be very practical. Although it may require modules to
be compiled more than once to achieve full optimisation, less optimised executables can
be created after each module is compiled only once. Since a fully optimised executable
is likely to be needed only occasionally, compilation times should not be affected
excessively. The generated .reg and .imdg files are typically small, as is the cost of
reading, updating and writing them. The compilation model also robustly handles
arbitrary changes to modules by invalidating unsafe analysis information. However,
in order for the model to become fully practical, its workings should be completely
transparent to the programmer; this will require the development of a make-like build

tool to control compilation and find the necessary global analysis fixpoint.

o Appropriate treatment of library modules. Two possible approaches to handling library

modules when performing inter-module analysis were discussed in Section 7.5.2.

e The use of programmer declarations to improve the accuracy and efficiency of analysis.
The three analysis domains DefAL , ASub™L and Freeness™* presented in Chapter 5
all used groundness information from mode declarations to augment the information
inferred. This was particularly important for efficiency, as the cost of Herbrand analysis

jumped considerably when oo modes were used frequently.

e Ffficiency considerations, to minimise the cost of analysis. A strong emphasis was put
on efficiency. Section 4.9 discussed six separate implemented optimisations to the basic
framework; some made consistent improvements, others made drastic improvements

for certain cases. The DBCFpes representation was chosen for Def™" descriptions in

127

Section 5.3.1 because previous research had shown it to be the most efficient repre-
sentation of Def. The addss operation for structure sharing from Section 5.4.2 was
specialised so it was not defined in terms of the inefficient conjss operation. Section
7.7 discussed efficiency considerations of inter-module analysis, the most important of
which was that the structure of .reg and .imdg files were chosen to minimise disk

reading and writing.

In addition to these points, we were careful to distinguish between those techniques that
have been implemented and those that have not.

This thesis has made two primary contributions. The first is that it provides a com-
prehensive description of a generic analysis framework and analysis domains as they are
implemented for a real compiler, without ignoring any details such as explicit disjunctions,
if-then-elses, higher-order unifications and applications, and so on. The second contribution
is that it provides the first detailed description of an implementation of the compilation
model used for inter-module analysis and optimisation, including details such as perfect
calls, the use of .reg and .imdg files, how to handle modules that require special treatment,
and other important details.

Finally, we have identified several further areas for future work. To improve the accu-
racy of Herbrand analyses, a Pos based groundness analysis could be implemented; also,
type-based analysis [37] might give better results. To improve the accuracy of determin-
ism analysis, sharing and freeness information could be used; if multi-variant specialisation
performed for Herbrand optimisations was performed before determinism analysis, different
variants of one procedure could have different determinisms and thus use different execution
algorithms.

As for further optimisations, an analysis that uses sharing and determinism information
to identify when notrail unifications can be used would be worth implementing since we
found them to be 2.9-4.5 times faster than the normal versions.

HAL was designed to support easy experimentation with different solvers and constraint
solving methods. With a robust, efficient generic analysis framework in place, it should
provide an equally useful platform for experimentation with different compile-time analyses

and optimisations.

128 CHAPTER 8. CONCLUSION

Bibliography

[1]

2]

[10]

Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Set-sharing is redundant for

pair-sharing. Theoretical Computer Science, 2001. To appear.

Matthias Blume and Andrew W. Appel. Lambda-splitting: A higher-order approach to
cross-module optimizations. In Proceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programming (ICFP’97), pages 112-124. ACM Press, June
1997.

Maurice Bruynooghe. A practical framework for the abstract intepretation of logic

programs. Journal of Logic Programming, 10(2):91-124, 1991.

Maurice Bruynooghe and Michael Codish. Freeness, sharing, linearity and correctness
— all at once. In Proceedings of the Third International Workshop on Static Analysis,
pages 153-164, Padova, Italy, 1993. Springer-Verlag.

Randal Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293-318, 1992.

Francisco Bueno, Maria Garcia de la Banda, Manuel Hermenegildo, Kim Marriott,
Germén Puebla, and Peter J. Stuckey. A model for inter-module analysis and optimizing
compilation. In Tenth International Workshop on Logic-based Program Synthesis and
Transformation, number 2042 in LNCS, pages 86—102. Springer-Verlag, July 2000.

Baudouin Le Charlier and Pascal Van Hentenryck. Experimental evaluation of a generic
abstract interpretation algorithm for Prolog. ACM Transactions on Programming Lan-
guages and Systems, 16(1):35-101, 1994.

Michael Codish, Dennis Dams, Gilberto Filé, and Maurice Bruynooghe. On the design of
a correct freeness analysis for logic programs. Journal of Logic Programming, 28(3):181—
206, 1996.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In Fourth
ACM Symposium on Principles of Programming Languages, pages 238-252. ACM Press,
1977.

Philip Dart. Dependency Analysis and Query Interfaces for Deductive Databases. PhD

thesis, Department of Computer Science, University of Melbourne, Australia, 1988.

129

130

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

Bart Demoen, Maria Garcia de la Banda, Warwick Harvey, Kim Marriott, and Pe-
ter J. Stuckey. Herbrand constraint solving in HAL. In D. De Schreye, editor, Logic
Programming: Proceedings of the 16th International Conference, pages 260-274. MIT
Press, 1999.

Bart Demoen, Maria Garcia de la Banda, Warwick Harvey, Kim Marriott, and Peter J.
Stuckey. An overview of HAL. In Joxan Jaffar, editor, Proceedings of the Fourth Inter-
national Conference on Principles and Practices of Constraint Programming, number
1713 in LNCS, pages 174-188, Alexandria, Virginia, October 1999. Springer-Verlag.

Bart Demoen, Maria Garcia de la Banda, and Peter J. Stuckey. Type constraint solving
for parametric and ad-hoc polymorphism. In Proceedings of the 22nd Australasian Com-
puter Science Conference, ACSC’99, pages 217-228, Auckland, New Zealand, January
1999. Springer-Verlag.

Daniel Diaz and Philippe Codognet. A minimal extension of the WAM for c1p(FD).
In Proceedings of the 10th International Conference on Logic Programming (ICLP’93),
pages 774-790, Budapest, Hungary, 1993. MIT Press.

Stuart I. Feldman. make — a program for maintaining computer programs. Software:
Practice & Experience, 9(4):255-265, April 1979.

Thom Frihwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1-3):95-138, October—December 1998.

Maria Garcia de la Banda, David Jeffery, Kim Marriott, Nicholas Nethercote, Peter J.
Stuckey, and Christian Holzbaur. Building constraint solvers with HAL. In Proceedings
of the 17th International Conference on Logic Programming (ICLP’01), November 2001.
To appear.

Maria Garcia de la Banda, Kim Marriott, Harald Sgndergaard, and Peter J. Stuckey.
Differential methods in logic program analysis. Journal of Logic Programming, 35(1):1-
37, 1998.

Maria Garcia de la Banda, Peter J. Stuckey, Warwick Harvey, and Kim Marriott. Mode
checking in HAL. In J. Lloyd et al., editors, Proceedings of the First International
Conference on Computational Logic, number 1861 in LNAI, pages 1270-1284, London,
United Kingdom, July 2000. Springer-Verlag.

Nevin C. Heintze, Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C.
Yap. The CLP(R) programmer’s manual version 1.2. Technical Report 92-24, Depart-

ment, of Computer Science, University of Melbourne, Australia, September 1992.

Fergus Henderson, Thomas Conway, Zoltan Somogyi, Peter Ross, and Tyson Dowd.
The Mercury user’s guide.

http://www.cs.mu.oz.au/mercury/information/doc/user guide_toc.html.

BIBLIOGRAPHY 131

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

Fergus Henderson, Zoltan Somogyi, and Thomas Conway. Determinism analysis in
the Mercury compiler. In Proceedings of the Australian Computer Science Conference,
pages 337-346, January 1996.

Manuel Hermenegildo, German Puebla, Kim Marriott, and Peter J. Stuckey. Incre-
mental analysis of constraint logic programs. ACM Transactions on Programming Lan-
guages and Systems, 22(2):187-223, March 2000.

Manuel Hermenegildo and Francesca Rossi. Non-strict independent and-parallelism. In
1990 International Conference on Logic Programming, pages 237-252. MIT Press, June
1990.

Christian Holzbaur. Metastructures vs. attributed variables in the context of extensible
unification. In M. Bruynooghe and M. Wirsing, editors, Proceedings of PLILP’93,
number 631 in LNCS, pages 260-268, Budapest, Hungary, 1993. Springer-Verlag.

Christian Holzbaur. OFAI clp(Q,R) manual version 1.3.3. Technical Report TR-~95-09,

Austrian Research Institute for Artificial Intelligence, Vienna, December 1995.

Christian Holzbaur, Peter J. Stuckey, Maria Garcia de la Banda, and David Jeffery.
Optimizing compilation of constraint handling rules. In P. Codognet, editor, Logic Pro-
gramming: Proceedings of the 17th International Conference, LNCS. Springer-Verlag,
2001. To appear.

Dean Jacobs and Anno Langen. Accurate and efficient approximation of variable alias-
ing in logic programs. In Proceedings of the North American Conference on Logic
Programming, pages 154-165, Cambridge, Mass., October 1989. MIT Press.

Dean Jacobs and Anno Langen. Static analysis of logic programs for independent AND
parallelism. Journal of Logic Programming, 13(2&3):291-314, 1992.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of
the 14th ACM Symposium on Principles of Programming Languages, pages 111-119,
Munich, Germany, January 1987. ACM Press.

Joxan Jaffar and Spiro Michaylov. Methodology and implementation of a CLP system.
In Jean-Louis Lassez, editor, Logic Programming: Proceedings of the 4th International
Conference, pages 196-218, Melbourne, Australia, May 1987. MIT Press.

Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The CLP(R)
language and system. ACM Transactions on Programming Languages and Systems,
14(3):339-395, July 1992.

Gerda Janssens, Maurice Bruynooghe, and Veroniek Dumortier. A blueprint for an ab-
stract machine for abstract interpretation of (constraint) logic programs. In J. W. Lloyd,
editor, Proceedings of the International Symposium on Logic Programming (ILPS),
pages 336-351, Portland, Oregon, December 1995. MIT Press.

132

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

David Jeffery, Fergus Henderson, and Zoltan Somogyi. Type classes in Mercury. Techni-
cal Report 98-13, Department of Computer Science, University of Melbourne, Australia,
September 1998.

Simon B. Jones and Daniel Le Métayer. Compile-time garbage collection by sharing
analysis. In Proceedings of the Conference on Functional Programming Languages and
Computer Architecture 89, pages 54-74, Imperial College, London, 1989. ACM.

Andrew Kelly, Andrew Macdonald, Kim Marriott, Harald Sgndergaard, and Peter J.
Stuckey. Optimizing compilation for CLP(R). ACM Transactions on Programming
Languages and Systems, 20(6):1223-1250, 1998.

Vitaly Lagoon and Peter J. Stuckey. A framework for analysis of typed logic pro-
grams. In Proceedings of the Fifth International Symposium on Functional and Logic
Programming, number 2024 in LNCS, pages 296-310. Springer-Verlag, 2001.

Anno Langen. Advanced Techniques for Approximating Variable Aliasing in Logic Pro-
grams. PhD thesis, University of Southern California, March 1991.

Lucent Technologies. Standard ML of New Jersey.
http://cm.bell-labs.com/cm/cs/what/smlnj/index.html.

Kim Marriot and Harald Sgndergaard. Precise and efficient groundness analysis for
logic programs. ACM Letters on Programming Languages and Systems, 2(1-4):181—
196, 1993.

Kim Marriott. Algebraic and logical semantics for CLP languages with dynamic schedul-
ing. Journal of Logic Programming, 31(1):71-84, July 1997.

Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction.
MIT Press, 1998.

Kimbal Marriott and Peter J. Stuckey. Approximating interaction between linear arith-
metic constraints. In M. Bruynooghe, editor, Logic Programming: Proceedings of the
1994 International Symposium, pages 571-585, Ithaca, New York, November 1994. MIT
Press.

Nancy Mazur, Gerda Janssens, and Maurice Bruynooghe. Towards memory reuse in
Mercury. In Proceedings of the International Workshop on Implementation of Declara-
tive Languages (IDL’99), Paris, France, September 1999.

Nancy Mazur, Gerda Janssens, and Maurice Bruynooghe. A module based analysis
for memory reuse in Mercury. In J. Lloyd et al., editors, Proceedings of the First
International Conference on Computational Logic, number 1861 in LNAI, pages 1255—
1269, London, United Kingdom, July 2000. Springer-Verlag.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

BIBLIOGRAPHY 133

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

K. Muthukumar and Manuel Hermenegildo. Combined determination of sharing and
freeness of program variables through abstract interpretation. In Proceedings of the
Eighth International Conference on Logic Programming (ICLP’91), pages 49-63, Paris,
France, 1991. MIT Press.

K. Muthukumar and Manuel Hermenegildo. Compile-time derivation of variable depen-
dency using abstract interpretation. Journal of Logic Programming, 13(2/3):315-347,
July 1992.

German Puebla, Maria Garcia de la Banda, Kim Marriott, and Peter J. Stuckey. Op-
timisation of logic programs with dynamic scheduling. In L. Naish, editor, Proceedings
of the Fourteenth International Conference on Logic Programming, pages 93—107. MIT
Press, 1997.

German Puebla and Manuel Hermenegildo. Optimized algorithms for incremental anal-
ysis of logic programs. In International Static Analysis Symposium, number 1145 in
LNCS, pages 270-284. Springer-Verlag, September 1996.

Germéan Puebla and Manuel Hermenegildo. Abstract multiple specialization and its
application to program parallelization. Journal of Logic Programming. Special Issue on
Synthesis, Transformation and Analysis of Logic Programs, 41(2&3):279-316, Novem-
ber 1999.

Germéan Puebla and Manuel Hermenegildo. Some issues in analysis and specialization of
modular Ciao-Prolog programs. In Special Issue on Optimization and Implementation
of Declarative Programming Languages, volume 30 of Electronic Notes in Theoretical
Computer Science. Elsevier — North Holland, March 2000.

Jean-Francois Puget. A C++ implementation of CLP. In Proceedings of SPICIS’94,
Singapore, November 1994.

Peter Ross, David Overton, and Zoltan Somogyi. Making Mercury programs tail re-
cursive. In Proceedings of the Ninth International Workshop on Logic-based Program
Synthesis and Transformation (LOPSTR’99), number 1817 in LNCS, pages 196-215,
Venice, Italy, September 1999. Springer-Verlag.

Peter Schachte. Precise and Efficient Static Analysis of Logic Programs. PhD thesis,
Department of Computer Science, University of Melbourne, Australia, July 1999.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of
Mercury: an efficient purely declarative logic programming language. Journal of Logic
Programming, 29(1-3):17-64, October—December 1996.

Harald Segndergaard. An application of abstract interpretation of logic programs: Occur
check reduction. In B. Robinet and R. Wilhelm, editors, Proceedings of the European
Symposium on Programming 86 (ESOP 86), number 213 in LNCS, pages 327-338.
Springer-Verlag, 1986.

134 BIBLIOGRAPHY

[58] Swedish Institute of Computer Science. SICStus Prolog home page.
http://www.sics.se/ps/sicstus.html.

[59] Andrew Taylor. Removal of dereferencing and trailing in Prolog compilation. In G. Levi
and M. Martelli, editors, Logic Programming: Proceedings of the Sizth International
Conference, pages 4860, Portugal, Lisbon, June 1989. MIT Press.

[60] Andrew Taylor. PARMA — bridging the performance gap between imperative and
logic programming. Journal of Logic Programming, 29(1-3):5-16, October—December
1996.

[61] Simon Taylor. Optimization of Mercury programs. Honour’s Report, Department of

Computer Science, University of Melbourne, November 1998.

[62] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. In Proceedings of the London Mathematical Society, series 2, volume 42,
pages 230265, 1936—7. Corrections, Ibid, volume 48, pages 544-546, 1937.

[63] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc.
In Proceedings of the 16th Annual ACM Symposium on Principles of Programming
Languages (POPL), pages 60-76, Austin, Texas, January 1989. ACM Press.

[64] Mark Wallace, Stefano Novello, and Joachim Schimpf. ECLiPSe: A platform for
constraint logic programming.
http://www.icparc.ic.ac.uk/eclipse/reports/eclipse/eclipse.html, August
1997.

[65] Will Winsborough and Annika Waern. Transparent and-parallelism in the presence of
shared free variables. In R. A. Kowalski and K. A. Bowen, editors, Logic Programming:
Proceedings of the Fifth International Conference and Symposium, pages 749-764, Cam-
bridge, Massachusetts, 1991. MIT Press.

