URL: http://www.elsevier.nl/loca{:e/entcs/volume89.htxﬁl 22 pages

Redux: A Dynamic Dataflow Tracer

Nicholas Nethercote ! and Alan Mycroft 2

Computer Laboratory, University of Cambridge
Cambridge, United Kingdom

Abstract

Redux is a tool that generates dynamic dataflow graphs. 1t generates these graphs by
tracing a program’s execution and recording every value-producing operation that
takes place, building up a complete computational history of every value produced.
For that execution, by considering the parts of the graph reachable from system
call inputs, we can choose to see only the dataflow that affects the outside world.
Redux works with program binaries, and thus is not restricted to programs written
in any particular language.

We explain how Redux works, and show how dynamic dataflow graphs give the
essence of a program’s computation. We show how Redux can be used for debugging
and program slicing, and consider a range of other possible uses.

1 Introduction

Redux is a tool that generates dynamic dataflow graphs (DDFGs). These
graphs represent the entire computational history of a program.

1.1 Owerview

Redux supervises a program as it executes, and records the dataflow—inputs
and outputs—of every operation that produces a value. Every register and
word of memory is shadowed by a pointer to a sub-graph that shows how the
value was computed.

A program’s behaviour, as seen from the outside world, is entirely dictated
by the system calls it makes during execution (assuming we ignore timing
issues). This includes its exit status, which comes from the _exit() system
call. Once a program terminates, by considering the parts of the DDFG
reachable from system call inputs, we can show all the computations that

! Email: njn25@cam.ac.uk
2 Email: am@cl.cam.ac.uk

(©2003 Published by Elsevier Science B. V.

4V UL iUV L AALVLS VA VIV L L

directly affect this behaviour.® This captures the essence of the program’s

computation, and ignores uninteresting book-keeping details.

Redux runs on x86 machines running Linux, works directly with program
binaries without requiring any recompilation, relinking, or even source code,
and is language-independent.

1.2 Contributions of this Work

The contributions of this work are as follows.

* We introduce the dynamic dataflow graph. It is basically the same as
Agrawal and Horgan’s dynamic dependence graph (DDG) [4] minus the con-
trol nodes and edges, at a lower level of abstraction (instructions instead
of C statements), and with the arrows reversed. However, we claim that
ignoring control flow is crucial for making the graphs more widely useful.

* We introduce a tool, Redux, which computes DDFGs. Redux is the first
tool we know of that traces program computations in detail without being
tied to a particular programming language or language implementation.

* We show that these graphs are not just data structures that need to be
built to achieve another goal, such as program slicing, but useful in their
own right for program visualisation and other uses, and that improving their
presentation is important.

* We claim that DDFGs represent the essence of a program’s computation,
and show that programs that compute the same thing in highly different
ways have very similar or identical DDFGs.

1.8 Paper Organisation

This paper is structured as follows. Section 2 introduces DDFGs with some
examples. Section 3 describes how Redux works. Section 4 shows how pro-
grams computing the same thing in very different ways can have similar or
identical DDFGs. Section 5 discusses possible uses of Redux. Section 6 de-
scribes difficulties and problems with Redux. Section 7 discusses related work,
and Section 8 concludes.

2 Dynamic Dataflow Graphs

A dynamic dataflow graph (DDFG) is a directed acyclic graph (N, E). N is
a multi-set of nodes representing value-producing operations (with multiple
executions of the same operation represented distinctly). E is the set of edges
denoting dynamic dataflow between nodes; it also contains some edges denot-
ing state dependencies that are important to capture the program’s behaviour.
This section gives some example DDFGs produced by Redux.

3 We will use “behaviour” in this sense throughout this paper.

2

4V UL iUV L AALVLS VA VIV L L

int faci(int n) { int facr(int n) {
=1

int i, ans ; if (n <= 1)
for (i =n; 1 > 1; i--) return 1;
ans = ans * 1i; else
return ans; return n * facr(n-1);
} }
int main(void) { int main(void) {
return faci(b); return facr(b);
} }
5L
c.5L c.1L - \
dec: 4L
| \
dec: 4L * - 5L

N/ e

* 1 120L /
|

* 1 120L

_exit: 120L

Fig. 1. Iterative and recursive fac(5) in C

2.1 Factorial

Figure 1 shows two C programs that compute the factorial of five, one itera-
tively, and one recursively, and the resultant DDFGs. There are three node
types shown. Those labelled “c.5L.” and “c.1L” represent constants. The ‘c’
(short for “code”) indicates that the constants appeared literally in the code;
the letter “L” (short for “long”) indicates they have 32 bits. Operation nodes
(e.g. “dec : 4L”; “dec” is short for “decrement”) contain an operation name
colon-separated from the operation’s result; the operands can be seen from the
input edges. The “_exit” node shows the program’s exit status, as returned
by the _exit () system call; system call nodes are shown with darker borders.

3

4V UL iUV L AALVLS VA VIV L L

All operations that produce values are represented with nodes—mostly
arithmetic/logic operations, and system calls. Other book-keeping compu-
tations that do not produce values are not shown, such as loads from and
stores to memory (pointer use), register-to-register moves, and function calls
(direct and indirect). Also, no control flow is shown in the DDFG (it will be
considered further in Section 6.3). Module boundaries are also irrelevant.

The DDFG represents values produced, and the inputs to the operations
producing them. It does not represent the exact location of those inputs and
outputs, the address of the instructions that produced them, and so on.

2.2 Hello World

Figure 2 shows the Hello World C program and two versions of its DDFG.
Consider first the larger DDFG on the left-hand side. We will first explain the
DDFG’s components, and then analyse it, to see what it tells us about the
program’s execution. We will then consider the smaller DDFG.

Static constants are written with an prefix. The system call temporal
order, which must be preserved because they have side-effects affecting the
program’s behaviour, is shown by the dotted state dependency edges. The se-
quencing of other operations is unimportant, except that the obvious dataflow
constraints must be observed.

U »
S.

System call arguments are shown in the same way as arithmetic operations’
operands. However, many system calls also have indirect arguments, accessed
via direct pointer arguments; these memory inputs are important too. In this
example, the “Hello, world!\n” memory input is shown as an extra argument
to the write() system call. Its address is given in parentheses to show that
it is paired with the direct pointer argument. System calls can also produce
memory outputs via pointers. They are shown with dashed edges to dashed
nodes, which contain the offset of the word within the memory block.* The
fstat64() call has one; this is the .st_blocksize field 52 bytes into the
output struct stat64 buffer.

The top node contains an inlined argument “%e[sb]p”. By default, the
computational histories of the stack pointer (%esp) and frame pointer (%ebp)
are not tracked. This is because the computations producing these pointers are
usually long, uninteresting chains of small constant additions and subtractions.
The “I+” nodes represent lea x86 instructions, which programs often use for
integer addition.

Even for this tiny program, several measures have been taken to make
the DDFG as compact and readable as possible: non-shared constants are
inlined into their descendent nodes; a chain of increment (“inc”) nodes is
abbreviated, with a dashed edge indicating the number of elided nodes; and
the string argument to write () is pretty-printed in a compact way.

4 This makes sense because Linux system calls only use pointers to indirectly access flat
memory blocks; there are no reads within linked data structures.

4

4V UL iUV L AALVLS VA VIV L L

I+(%e[sb]p, c.OXFFFFFF88L) (0x4016E000)

OXBFFIEMOL s."Hello, world!\n"
feasdsIL,) [_10_printf(s1L, %elsblp,) |
A N N
N N - 3
(+52) : 1024L : f-out : 0x4016E400L
1+(_, c.4095L) \ _10O_cleanup
5119L -
| ;
_exit(c.0L)
&(_, c.OXFFFFF000L) oL
4096L

-

mmap(c.0L, _, c.3L, ¢.34L, c.OxFFFFFFFFL, c.0L)
0x4016E000L

O T

S lea2(_, _,c.1L,cOL)
inc: 0x4C{16E001L OXAO16E400L
|
1[12]

Y
inc : 0x4016E00EL

-4 (0x4016E000) +(_, c.4095L)
: s."Hello, world!\n" 5119L
4 /
write(s.1L, , ,) &(_, c.OxFFFFFO00L)
14L 4096L

#include <stdlib.h>

int main(void) {

~exit(con) printf ("Hello, world!\n");
oL }

Fig. 2. Hello World

v

Now for the analysis. We can interpret the program’s operation quite
precisely from the DDFG. The function printf () checks that standard output
(file descriptor 1) is writable with the fstat64 () system call. It then allocates
a buffer using mmap () (at 0x4016E000). The static string “Hello, world!\n” is
copied into the buffer, which is passed to the write(). The other arguments
to write() are 1 (standard output again) and the string length (14) which is
the difference between the string’s start and end addresses; the end address
was found by incrementing a variable for each character copied into the buffer
(shown by the abbreviated chain of “inc” nodes). Finally, the buffer is freed
with munmap (), and _exit() terminates the program.

5

4V UL iUV L AALVLS VA VIV L L

Finally, Redux can also create more abstract DDFGs, by using its ——fold
option to specify functions whose nodes and edges should be conflated. The
right-hand side of Figure 2 shows Hello World’s DDFG when _I0_printf ()
and _I0_cleanup() are folded.® The function _I0_cleanup() is invoked by
the C library after main() exits; we had to look through the glibc source
code to determine its name. Function output (“f-out”) nodes are similar to
system call memory output nodes—they show values produced by the function
(unlike system call nodes, this includes its return value) that are subsequently
used in a computation reachable from a system call argument.

3 How Redux Works

3.1 Implementation Framework

Redux is implemented as a skin that plugs into Valgrind [13], a generic pro-
gram supervision framework. Valgrind executes programs using dynamic bi-
nary translation, and thus can instrument all code in the program, including
libraries, without needing source code. Valgrind handles the complicated task
of executing the supervised program. Redux only has to instrument the code,
and provide runtime support for the instrumentation.

3.2 Overview

Graphs are built dependence-wise, i.e. each node points to its inputs. This is
the natural way to do things, since an operation’s operands are created before
the operation takes place, and each operation has a fixed number of operands
(except for system calls with memory inputs) whereas an operation result can
be used any number of times. However, the graphs are drawn dataflow-wise,
i.e. each node points to the nodes that use its value. We have found this more
intuitive to read.

The basic implementation idea is simple. Every register and memory word
is shadowed by a pointer to a graph node, showing how it was computed. The
graph is initially empty. To begin, register shadows are initialised to point to a
special “unknown register value” node, and each word of static memory has its
shadow initialised (see Section 3.7 for details). As the program progresses, one
node is added to the graph for each value-producing instruction executed. At
termination, Redux draws only those nodes in the graph that directly affected
the system call arguments, and hence the program’s behaviour.

It is worth noting that the instrumentation added does not change the
basic behaviour of a program; the instrumentation’s effects take place “beside”
the program’s execution. In particular, the instrumentation does not affect
whether a program terminates.

5 We folded _I0_printf () because that is the name that appears in glibc’s symbol table,
which Valgrind relies on to detect entry to the function; printf () is just an alias.

6

4V UL iUV L AALVLS VA VIV L L

3.8 Building and Sharing Nodes

Nodes hold a tag indicating their type (“+7, “inc”, etc.) and pointers to their
operands. During execution, a new node is built for every value-producing
operation executed. Let us denote the shadow pointer for register j%reg with
sh(%reg). This instruction (using AT&T assembly code syntax):

addl Y%eax, Y%ebx
will be instrumented to update the shadow registers as follows:
sh(%ebx) := +(sh(%ebx), sh(leax))

Where +(X,Y) represents a “+” node. Instructions that only move existing
values, such as moves, loads, and stores, are instrumented so that the shadows
are copied appropriately. For example:

movl %ebx, %ecx

is instrumented to update the shadow registers as follows:
sh(%ecx) := sh(ebx)

Consider the following instructions:

1: movl $3, %eax
2: movl $5, %ebx
3: addl Yeax, %ebx
4: incl %ebx

For instructions 1 and 2, two constant nodes are built; sh(%eax) and sh(%ebx)
are set to point to them, as shown in Figure 3(a). For instruction 3, a “+”
node is built, with the two constant nodes as its operands, and sh(%ebx)
is updated to point to it (Figure 3(b)). Each node stores the result of its
operation, and the “4+” node’s result (8) is equal to the value in %ebx. This is
an invariant: the result of a node pointed to directly by a register or memory
word’s shadow is always equal to the value of the register or memory word.
For instruction 4, an “inc” node is built, its operand being the “+” node, and
sh(%ebx) is updated again (Figure 3(c)). Again the invariant holds—V%ebx’s
value (9) matches the “inc¢” node’s, but no longer matches the “+” node’s,
which sh(%ebx) now only indirectly points to.®

The shadows of deallocated memory words are set to point to a special
“unknown memory” node. If these nodes appear in a program’s graph, it very
probably indicates a bug in the program.

6 Valgrind uses a RISC-like intermediate representation called UCode that is much sim-
pler than x86 code. Skins do not see x86 code directly, so these examples are not quite
representative. But the ideas and results are the same.

7

4V UL iUV L AALVLS VA VIV L L

%eax : 3L Yook 3L
sh(%eax) —= c | 3L '
) e
%ebx : 5L %ebx : 8L
sh(%ebx) —]c [5L | sheeox) 1+ 18| HF—={c|5L]

(a) After instruction 2 (b) After instruction 3
%eax : 3L
sh(%eax) = c| 3L

%ebx : 9L
sy Lo [or [—{rTe [E—{e]s]

(c) After instruction 4

Fig. 3. Building a Graph

3.4 System Calls

System calls are not handled very differently to arithmetic operations. When
one takes place, the arguments (and their shadows) can be found from the
registers (and shadow registers) easily.

Memory inputs are trickier, but not too difficult because Valgrind provides
hooks that tell a skin when a system call reads memory. When this happens,
Redux gathers the shadow words for the memory input block into an aggregate
“chunk” node which is made an additional input to the system call node.

Memory outputs are handled similarly. When Valgrind tells Redux that a
system call has written memory, Redux builds new system call memory output
nodes for each word written by the call.

3.5 Sub-word Operations

Register and memory shadowing is done at the word (32-bit) level. However,
some instructions use one- or two-byte operands. This requires special “read
byte” and “read word” nodes for extracting sub-words, and “split” nodes for
combining them. Consider the instruction that moves the least-significant
byte of register %eax into %ebx:

movb %al, %bl

It is instrumented to update the shadow registers as follows:

sh(%ebx) := split4B(BO(sh(%eax)), Bl(sh(%ebx)),
B2(sh(%ebx)), B3(sh(%ebx)))
sh(%eax) := split4B(BO(sh(%eax)), Bi(sh(%eax)),

8

4V UL iUV L AALVLS VA VIV L L

B2(sh(%eax)), B3(sh(%eax)))

where a Bn(X) node represents the extraction of the nth byte of X.

Note that we split sh(%eax) in-place, overwriting the previous unsplit
shadow. This is not essential, but if part of %eax is used in a subsequent 1-byte
operation, having done this we avoid having to split it again. We found that
this reduces the number of nodes built by around 15%-25%. Unfortunately,
%keax may then be used in a 4-byte operation, the node for which will now have
an unnecessarily split operand, which makes the DDFG larger and uglier. But
we can remove these unnecessary splits in the rewrite stage (see Section 3.8).

Split nodes are fiddly and complicate the implementation significantly. The
other possibility would be to shadow every byte of memory separately, and
use “merge” nodes for word-sized operations. This would bloat memory use
even more, and most operations are done at the word level, so the current
approach seems the best.

3.6 Allocating Nodes

Redux manages its own memory pool for allocating nodes. Nodes are allo-
cated sequentially from 1MB superblocks, which is very simple and fast. No
garbage collection is done; there has been no need yet, since the programs we
have looked at have been small and required only a few megabytes of nodes
(Section 6.4 discusses scaling Redux up to bigger programs).

If garbage collection were implemented, reference counting would probably
be most suitable, rather than mark-sweep or copy collection. This is because
the root set during execution is huge—every shadow register, and every shadow
memory word—so tracing would be prohibitively slow. Also, there are no
cycles to cause problems. We could allocate perhaps three bits in each node
to track how many references it has, and the count could saturate at eight; if
a node was referenced more than eight times it would never be deallocated.
In practice, only a tiny fraction of nodes have this many references.

3.7 Lazy Node Building

One important optimisation reduces the number of nodes built. For each
word of static memory initialised at startup, we do not build a node, but
instead tag the lowest bit of its shadow. This distinguishes it from ordinary
pointers because Redux’s allocator ensures nodes are word-aligned, so the
bottom two bits of real node pointers are always zero. When reading a node
from a shadow word, Redux first checks if the bottom bit is marked, and if so,
unmarks the bit and builds a constant node for that word. Thus, nodes are
built for static words only when they are used. For Hello World, this avoids
building almost 700,000 unnecessary nodes, because a lot of static memory—
particularly code—is never used as data.

9

4V UL iUV L AALVLS VA VIV L L

3.8 Rewriting and Printing

Once the program terminates, Redux performs three passes over the parts of
the DDFG reachable from the root set of system call nodes. The first pass
counts how many times each node is used as an input to another node; those
used only once can be rewritten more aggressively. The second pass performs
rewriting, mostly making peephole simplifications of the graph that make it
more compact and prettier. The third pass prints the graphs.

For the factorial examples in Figure 1, 80 nodes were built for the opera-
tions within main (), but only nine are shown (the “_exit” node is built outside
of main()). Outside main(), 21,391 nodes were built; Valgrind traces pretty
much everything, including the dynamic linker (which links functions from
shared objects on demand), which account for most of these. By comparison,
for the empty C program that just returns zero, Redux builds eight nodes
within main(), one for the constant zero, and seven book-keeping nodes for
building up and tearing down the stack frame, which do not appear in the
drawn DDFG.

Redux supports two graph formats. The first is for dot, a directed graph
drawer that produces PostScript graphs, which is part of AT&T’s Graphviz
package [5]. The second is for aiSee, an interactive graph viewer [1]. We
have found that dot’s graphs are prettier, but aiSee’s interactivity gives more
flexibility; for example, the node layout algorithm can be changed. The two
programs have very similar input languages, so supporting both is not difficult.
All the examples in this paper were drawn by dot.

4 Essences

This section considers possible ways of comparing program equivalence, and
shows how programs that perform the same computation in very different
ways can have similar or identical DDFGs.

4.1 Program Equivalence

There are various ways to think about whether two programs are “equivalent”.
At one extreme, if we consider only their visible behaviour, the only important
thing is which system calls are made, their order, and what their inputs were.
For a given input 7, if two programs executed the same system calls in the
same order with the same inputs, they they are equivalent with respect to
that input I (we will ignore timing issues here).

The other extreme is to consider two programs equivalent with respect to
input I if they execute the same instruction sequence when given that input
1. This idea of equivalence is so rigid it is almost useless; two programs would
probably have to be identical to fit this definition.

Using DDFGs to compare programs gives us a definition of equivalence,
based on dataflow, that is somewhere in between these two extremes. We call

10

4V UL iUV L AALVLS VA VIV L L

this level of detail shown in DDFGs the essence of a program. Our reason for
using this word should hopefully be clear after the following three examples.

4.2 Factorial in C

Figure 1 showed the DDFGs for computing the factorial of five in C, using
iteration and naive recursion. The graphs have the same nodes, because they
perform the same operations, but different shapes, because their dataflow
is different. However, one can define fac() recursively in a way that is
equivalent—it has the same dataflow—to the iterative version, by using an
accumulator to make it tail-recursive:

int faca(int n, int acc) {

if (n <= 1)
return acc;
else

return faca(n-1, acc*n);

3

The graph for this version is identical to that of the iterative version on the
left-hand side of Figure 1.

4.8 Factorial on a Stack Machine

Encouraged by this result, we wrote the iterative factorial program in a small
stack machine language, for which we had an interpreter. The program,
and the resulting DDFG, are shown in Figure 4. We folded the function
read_file(), which reads the stack machine program from file, and produces
the outputs seen in the “f-out” nodes—the integers 5, 1 and 1 which were
converted from the ASCII characters ’5’, '1’ and ’1’ read from the program
file (underlined in Figure 4).

It is immediately obvious that the part of the graph computing the factorial
is almost identical to those seen previously. The only difference is that instead
of using a decl x86 instruction to decrement the loop counter, the stack
machine program uses a subl x86 instruction with 1 as the argument.

Redux sees only pure dataflow; the workings of the interpreter such as the
pushes and pops, and loads and stores to memory of intermediate results, are
completely transparent. Redux has extracted the essence of the computation
which was (almost) identical to that of the C version.

4.4 Factorial in Haskell

Finally, we tried the same experiment in the lazy, purely functional language
Haskell [14], using the Glasgow Haskell Compiler [10]. The program and graph
are shown in Figure 5. Unlike the previous programs, this one does not com-
pute the factorial of five and return the value. Instead it computes the factorial
of five using naive recursion and accumulator recursion, adds the two results,

11

4V UL iUV L

LRIV 4AVA LUV L L

| read file(s0L, %efsb]p) |

push 5 dref O) R

asg 2 mul ’ T ~a
push 1 asg 1 f-out : 5L f-out : 1L f-out : 1L
asg 1 dref 0O

dref 2 push 1

asg 0 sub

labl 100 asg O

dref O goto 100

push 1 labl 101 :

psub dref 1 .

zero 101 halt 3: . oo

dref 1 B

Fig. 4. Iterative fac(5) on an interpreted stack machine

and prints the sum. We did this because Haskell programs always return zero
to the operating system unless they halt with an exception. We also chose to
fold the functions startupHaskell() and shutdownHaskellAndExit() that
initialise and terminate the Haskell runtime system, which consist of calls to
the system calls sigaction(), times(), etc., and are not of interest to us.
The two factorial computations are in the graph’s top right-hand corner.
They are clearly identical to those in Figure 1. Most of the rest of the graph
shows the conversion of the answer 240 into the characters '2’, 4" and 0’
that are written with write(). Once again, despite the program using a very
different execution method, the essence of the computation is the same.

5 Possible Uses

DDFGs are very pretty, but it is not immediately obvious how they should be
used—they are a solution looking for a problem. This section describes two
specific uses that we have implemented, and several other possible uses.

5.1 Debugging

Standard debuggers do not allow backwards execution. This is a shame, be-
cause the usual debugging approach is to find a breakpoint after a bug has
manifested (e.g. when a variable has an incorrect value), and then repeatedly
sets breakpoints earlier in the execution, restarting the program each time,
until the erroneous line is identified.

Redux cannot be used for backwards execution, but it does provide a
history of all previous computations, and can present that information in a
highly readable way. Instead of a invoking a “print” command on an incorrect
variable (in memory or a register) at a breakpoint, a user could invoke a “why”

12

4V UL iUV L AALVLS VA VIV L L

-(c5L, c1L)
4L

-(cll):3L
main = putStrLn (show (facr 5 + faca 5 1)) . 1L§/2L
-, C. N
facr 0 = 1 - cll) 1L
facr n = n * facr (n-1) o) e ei L
-(c. 4Lc.) (c. 5|Y_CI) L, _{
faca 0 acc = acc -(,clL):3L *:20L *:2L
faca n acc = faca (n-1) (acc*n) l\L \/
< cll):2l * : 60L *TL /
-(cll): 1L *:120L //*:24L
* 1200 *(_, c5L): 120
+:240L
inc(c_o‘L) L divL2,4sL10L) modLO,LsmL)
A
inc: 3L divLésloL) mod(ileOL) +(_, c.48L)

H+(%elsblp, c O FEFEEL) SartupHaskall(%do]p) +(,c0L): 3L o) o) /

IR |
L ’ j \ / BO:0
a! y
ioctl(cL, (;:I.-21505L,) f-out: OXAL1BDO0OL inc- al Bo iy B (0x411BD00B)

| N

(0x411BD008)
chunk

lea2(c.0L, _, cL, c.8L)
0x411BDO0SL

C M writesal,)
a
shutdownHaskel| AndExit

Fig. 5. Iterative and recursive fac(5) in Haskell

-(,coL): 4L

command that prints out the sub-graph reachable from the specified variable.
This graph would show the entire computational history of the variable, which
would hopefully make it simple to identify the bug.

As an example of this, when we first implemented the Haskell factorial
program in Figure 5, faca was defined wrongly. We generated the graph
without running the program normally first, and the result for the final “*”
node for faca was zero instead of 120. Our immediate reaction was to look
back at the code to see what the problem was, but we instead looked more
carefully at the graph. Tracing back from the erroneous “*” node with value
zero, we could see the shape of the computation was identical to that in
Figure 1, but that the result of every node was zero. It was instantly obvious
that the problem was that we had used zero as the initial accumulator value
instead of one. It was also clear that the problem was not, for example, caused

13

4V UL iUV L AALVLS VA VIV L L

by an incorrect number of recursive calls to faca5.”

Implementing simple support for sub-graph inspection within Redux was
quite straightforward—printing a sub-graph for a specific variable part-way
through execution is barely different to printing the graph at the program’s
end. All it required was a way to specify breakpoints. They were added
using client requests, a Valgrind mechanism that allows the program being
supervised to pass a message to a skin. In this case, the client request indicated
the address of the variable of interest. This technique requires recompiling the
client program to specify a new variable to inspect, which is unfortunate. A
better way would be to specify breakpoints via command line arguments, or
interactively. This is quite possible within Valgrind by better utilising the
debug information, but we have not implemented it yet.

5.2 Dynamic Program Slicing

From debugging via sub-graph inspection, it is a short step to dynamic pro-
gram slicing [4]. The sub-graph reachable from a variable represents all the
operations that contributed to its current value. If we annotate every node
with the address of its originating instruction, the addresses of the nodes in
that sub-graph form a (non-executable) dynamic data slice [3] for that vari-
able, with respect to the program input. The slice is the “projection” of the
sub-graph onto the code.

We did this. Adding instruction addresses to nodes was simple. We printed
the slice information in a format readable by cg_annotate, a source annota-
tion script that comes with Cachegrind, one of the skins distributed with
Valgrind. The following example shows the program slice for the exit status
of the iterative factorial C program from Figure 1.

int fac(int n) {

1 . int i, ans = 1;
3 for (1 =n; 1 > 1; i--)
4 ans = ans * 1i;
return ans;
}
int main(int argc, char* argv[]) {
1 . return fac(5);
}

The two numbers on each line indicate how many constant and non-constant
nodes originated from it. A ‘.’ represents zero. Compare this with the follow-
ing slice for the stack machine implementation of fac(5) from Figure 4.

—= 1line 171 —=mmmmmm e
if (neg) ++s;
13 18 for(n = 0; isdigit(#s); n = n*10 + *s++ - ’0?)

" This example is also notable because Haskell programs are notoriously difficult to debug.

14

4V UL iUV L AALVLS VA VIV L L

-- line 242 —--———-———————— -
case add: stk[sp+1l] = stk[sp] + stk[sp+1]; ++sp; break;
3 case sub: stklsp+tl] = stklsp+1l] - stklspl; ++sp; break;
. case psub: r = stk[sp+1l] - stkl[sp];
-- line 247 - -———-———————— -
++sp;break;
4 case mul: stk[sp+1] = stk[sp+1] * stk[sp]; ++sp; break;
case div: r = (int)stk[sp+1] / stklspl; stklsp+l] = r;

Most of the nodes arose from the conversion of digit characters to integers,
which were hidden in Figure 4 by the folding of read_file(). (Note that
nodes are built for literal constants each time their containing instruction is
executed.) The rest of the nodes come from the actions dealing with the stack
machine’s sub and mul instructions. This comparison emphasises just how
well Redux can see through a program’s book-keeping.

One disadvantage of this approach compared to the sub-graph printing is
that not all relevant source code may be available. In our second example,
some nodes were not represented because they came from glibc code that we
did not have the source for.

The most obvious use of this is again for debugging. Sometimes the sub-
graph alone might be difficult to interpret, and having a direct connection to
the program source might make a variable’s computational history much easier
to understand. It could also be used in any other way program slicing can be
used [15], such as program differencing, software maintenance, or regression
testing, but other slicing techniques that have lower overheads might be more
appropriate.

5.3 Other Uses

These examples are just a starting point. The following list has several sug-
gestions. Some could not be achieved with Redux in its current form, or might
not be feasible in practice, but they give an idea of the range of uses DDFGs
might have.

* Program Comprehension: As a generalisation of debugging, DDFGs could
be used not to find bugs, but to generally improve understanding of exactly
what a program is doing, and where its data flows.

* De-obfuscation: Redux can see through some simple kinds of obfuscation.
For example, running a program through some kind of interpreter to hide
what it is doing will not be of any use against Redux, as the stack machine
interpreter example in Section 4.3 showed. For more highly obfuscated
programs, the DDFG could provide a good starting point for understanding
what the program is doing. A DDFG might even be useful for analysing
cryptographic code in some way.

* Value Seepage: Debugging with sub-graphs considers the past history of a
15

4V UL iUV L AALVLS VA VIV L L

value. The dual to this is to consider a value’s future: how is it used in the
rest of the program? Where does it reach? Such information could be useful
for understanding programs better, especially security aspects. This is the
same idea used in forward slicing [11]. It also has a similar feel to Perl’s
taintedness tracking [17], whereby values from untrusted sources (e.g. user
input) cannot be used as is, but must be “laundered” in some way, otherwise
a runtime error occurs. Redux would have to be changed to support this,
because of the way the graphs are built—each node points back to nodes
built in the past, and does not record how its value is used in the future.
This change would not be too difficult.

Program Comparison: Since Redux sees the essence of a program’s compu-
tation, it could be used to provide a semi-rigorous comparison of programs.
This might be useful for determining whether two programs share part of
their code, or use the same algorithm to compute something. It could even
have implications for software patent issues.® The comparisons described
in Section 4 are preliminary, but quite promising; this looks like an area
worthy of more study.

Decompilation: The standard approaches to decompilation (e.g. [8,12]) con-
sider only the static program. When a decompiler cannot decompile part of
a program in this way, dynamic information such as that in a DDFG might
be helpful.

Limits of Parallelism: Since the DDFG represents the bare bones of a com-
putation, it gives some idea of the level of parallelism in a program’s compu-
tation, independent of exactly how that computation is programmed. This
parallelism is at a somewhat higher level than instruction-level parallelism
[16]. Speaking very generally, a wider DDFG implies more inherent paral-
lelism in a program.

Test Suite Generation: If Redux tracked conditional branches, for each
branch that is always or never taken, it might be possible to work back
through the DDFG from the conditional test’s inputs, and determine how
the program’s input should be changed so that the branch goes the other
way. This could be useful for automatically extending test suites to increase
their coverage. While this is a nice idea, in practice it would be very diffi-
cult, not least because of the problems Redux has with tracking conditional
branches, described in Section 6.3.

6 Difficulties

What Redux does—tracking the entire computational history of a program—
is quite ambitious. We have encountered multiple practical difficulties. This
section describes some of them, and how we have approached them, with

8 But we hesitate to enter such a legal swamp.

16

4V UL iUV L AALVLS VA VIV L L

varying levels of success.

6.1 Normalisation

Since we claim that the DDFG represents the essence of a program’s computa-
tion, some kind of normalisation should take place, so that small unimportant
differences can be ignored. One example we saw in Section 4 was the differ-
ence between a +(X,1) node and an inc(X) node. An x86-specific example
is the lea instruction, which is often used not for calculating addresses, but
as a quasi-three-address alternative to the two-address add instruction. Also,
the instruction xorl Y%reg,%reg (or subl %reg,’%reg) is often used to zero a
register jreg, because it is a shorter instruction than movl 0x0,%reg.

Currently, a few transformations are hard-wired into the graph rewriting
and printing passes. For example, an xorl Yreg,’reg node is transformed
into a constant node “z.0L” (the ‘7’ indicates the value comes from a special
instruction that always produces zero). A more general approach would be to
have some kind of mini-language for specifying transformations of sub-graphs,
although we do not yet have a clear idea how to do this.

6.2 Loop Rolling

Redux already does some very basic loop rolling for one case—long chains of
repeated “inc” or “dec” nodes. It is important to avoid bloating the drawn
graphs with boring chains. This loop rolling is hard-wired into the graph
printing phase; no nodes are actually removed from the graph. A small step
further is to do the same for chains of nodes that add or subtract the same
constant; we have seen this case in graphs for some programs.

A bigger challenge is to find a more general method for rolling up loops.
It is not clear to us how to do this; loops with simple dataflow dependencies
and few operations are not hard, but the difficulty jumps greatly as the loops
grow and/or their dataflow becomes more tangled. Representation of rolled
loops is another issue; a good representation is not obvious even for the simple
factorial loops in Figure 1.

6.3 Conditional Branches

So far, we have not considered conditional branches at all. Often this is the
best thing to do, but sometimes the conditions are critical. Consider this C
program:

int main(int argc, char* argv[]) {
if (<complex condition using argc, argv[]>)

return 1; // DDFG: _exit(c.1L)
else
return O; // DDFG: _exit(c.OL)

17

4V UL iUV L AALVLS VA VIV L L

We ignore the condition, the most interesting part of the program, and end
up with a useless graph “_exit(c.0L)” or “_exit(c.1L)”.

Unfortunately, only a tiny fraction of conditionals are interesting, and
choosing which ones to show is difficult. One way to show them would be to
annotate edges with a node representing the branch (or branches) that had to
be taken for that edge to be created. Each branch node would have as inputs
the values used in the conditional test. In the small example above, the edge
between the “c.0L” or “c.1L” node and the “_exit” node would be annotated
by a branch node that represents the complex condition. Thus the interesting
part of the computation would be included.

To do this properly we must know the “scope” of a conditional, i.e. know
which conditional branches each instruction is dominated by. Unfortunately,
we do not know how to determine this from the dynamic instruction stream
that Redux sees. One possibility would be to modify a C compiler to insert
client requests that tell Redux the start and end of conditional scopes. But
even if we did this, we fear that the graphs would be bloated terribly by many
uninteresting conditions.

6.4 Scaling

The most obvious and pressing problem with Redux is that of scaling. It
works well for very small programs, but it is unclear if it will be useful on
larger programs. There are two main aspects to this problem.

Firstly, the bigger difficulty is drawing and presenting the graphs. Figure 6
shows two DDFGs for the compression program bzip2 (a 26KB executable
when stripped of all symbol information); the left graph is for compressing a
two-byte file, the right graph is for compressing a ten-byte file. On a 1400MHz
Athlon, running bzip2 under Redux took about 0.8 seconds for both cases, but
the graph drawer dot took 8 seconds to draw the first graph, and over two
minutes to draw the second graph. The interactive graph viewer aiSee has
similar difficulties. The problem is that the graphs are highly connected; long
edges between distant nodes slow things down particularly. Presenting the
graphs in an intelligible way is also important. The graphs in Figure 6 are
already unwieldy.

Much effort has already been put into making the graphs more compact.
The --fold option, used for Figures 2, 4 and 5, is a good start for mitigating
these problems—Figure 5 is four times larger without folding.

Secondly, recording all this information is costly. This is unavoidable to
some extent, but there is a lot of room in the current implementation to reduce
overhead, by being cleverer with instrumentation to build fewer nodes, adding
garbage collection, and so on. The memory space required for nodes, which
can be proportional to the running time of the program, could be removed by
streaming them to disk. We have not concentrated on this issue yet because
the scaling problems of drawing the graphs are more limiting at the moment.

18

4V UL iUV L AALVLS VA VIV L L

Fig. 6. Compressing a two-byte file and a ten-byte file with bzip2

One likely way to deal with both problems is to be more selective. Cur-
rently, all reachable nodes are shown by default, and functions can be folded
if the user specifies. Perhaps this should be inverted so that the default is
to show a small amount of information, and the user can then specify the
interesting parts of the program. Being able to interactively zoom in on parts
of the graph would be very useful. We added support for outputting graphs in
aiSee format for this reason, because it allows groups of nodes to be folded up.
However we have not yet had much chance to experiment with this facility.
Alternatively, automatic factoring or compacting of similar sub-graphs would
be very useful, if done well; it is hard to say yet how well this could be done.

6.5 Limitations of the Implementation

Because Redux is a prototype, it has not been tried on a great range of pro-
grams. It cannot yet handle programs that use floating point arithmetic, nor
threaded programs. There are no fundamental reasons for this, it is mostly
a matter of time. It also has not been tried on many programs larger than
those mentioned, such as bzip2.

19

4V UL iUV L AALVLS VA VIV L L

7 Related Work

Static dataflow graphs (SDFGs) are commonly used in static analysis of pro-
grams. A DDFG is a partial unfolding of a SDFG, but with non-value pro-
ducing operations (such as assignments) removed, and with control flow “in-
stantiated” in a way that omits all control flow decisions. These differences
are crucial; a DDFG omits a lot of information and thus is less precise than
an SDFG, which means that its potential uses are very different. For ex-
ample, the SDFGs for the factorial programs examined in Section 4 would
be much more varied than their DDFGs, making them less useful for finding
the essence of a program. If we manage to perform loop rolling as described
in Section 6.2, the rolled DDFGs will be more similar to SDFGs, but still
fundamentally different.

The dynamic dependence graph [4,2] is quite similar to the DDFG, but
with additional control nodes and edges. The additional control representation
makes the graph a much less abstract representation of a program. Agrawal
et al used dynamic slicing (but not using the dynamic dependence graph,
as far as we can tell) in their SPYDER debugger, which annotated code in a
way similar to that described in Section 5.1; unlike Redux, SPYDER’s slices
included control statements. Choi et al used a similar dynamic graph in their
Parallel Program Debugger (PPD) [7].

The most similar tracing tools to Redux we could find are for tracing,
visualising and debugging execution of Haskell programs. Hat [6] transforms
Haskell programs in order to trace their execution. Three text-based tools
can be used to view the traces; one of them, Hat-Trail, allows backwards
exploration of a trace. The Haskell Object Observation Debugger (HOOD)
9] is a library containing a combinator observe that can be inserted into
programs to trace intermediate values, particularly data structures. It also
presents the trace information in a text-based way. Both these tools have
been inspired by the fact that more conventional debugging techniques are
more or less impossible in Haskell because it is lazy.

8 Conclusion

We have seen that Redux is a tool for drawing dynamic dataflow graphs of
programs. These graphs show the computational history of the program,
and reduce programs to a minimal essence; programs that compute the same
thing in multiple ways have identical or very similar graphs. The uses of
Redux are not completely clear, although we discussed how it could be used
for debugging and program slicing, as well as more speculative uses. We also
discussed challenges and difficulties of the implementation.

We feel that DDFGs have great potential, because they get to the heart
of what programs are computing. We hope that they can be used in a range
of ways for understanding, debugging, and improving programs.

20

4V UL iUV L AALVLS VA VIV L L

Acknowledgement

Many thanks to: Julian Seward, for creating Valgrind; and Harald Sgndergaard
and Peter Stuckey, for the use of their stack machine interpreter. The first
author gratefully acknowledges the financial support of Trinity College, Cam-
bridge.

References

[1] AbsInt Angewandte Informatik GmbH. aiSee — graph visualisation.
http://http://www.absint.com/aisee/.

[2] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Dynamic slicing in presence of
unconstrained pointers. In Proceedings of TAV/, pages 60-73, Victoria, British
Columbia, Canada, Oct. 1991.

[3] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debugging with dynamic
slicing and backtracking. Software—Practice and Ezperience, 23(6):589-616,
June 1993.

[4] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Proceedings of
PLDI’90, pages 246—-256, White Plains, New York, USA, June 1990.

[5] AT&T Labs-Research. Graphviz.
http://www.research.att.com/sw/tools/graphviz/.

[6] O. Chitil, C. Runciman, and M. Wallace. Transforming haskell for tracing. In
Proceedings of IFL 2002, Madrid, Spain, Sept. 2002. To appear.

[7] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging
parallel programs with flowback analysis. ACM Transactions on Programming
Languages and Systems, 13(4):491-530, Oct. 1991.

[8] C. Cifuentes. Reverse Compilation Techniques. PhD thesis, Faculty of
Information Technology, Queensland University of Technology, Australia, July
1994.

9] A. Gill. Debugging haskell by observing intermediate data structures. In
Proceedings of the 2000 Haskell Workshop, Montreal, Canada, Sept. 2000.

[10] The Glasgow Haskell Compiler. http://www.haskell.org/ghc.

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26—
60, Jan. 1990.

. Mycrott. Type-based decompilation. In Proceedings o , volume
12]A. M ft. T based d ilati In P di ESOP’99, vol
1576 of LNCS, pages 208-223, Amsterdam, The Netherlands, Mar. 1999.

[13] N. Nethercote and J. Seward. Valgrind: A program supervision framework. In
Proceedings of RV’03, Boulder, Colorado, USA, July 2003. To appear.

21

4V UL iUV L AALVLS VA VIV L L

[14] S. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University
Press, 2003.

[15] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121-189, Sept. 1995.

[16] D. W. Wall. Limits of instruction-level parallelism. Research Report 93/6,
Digital Western Research Laboratory, Palo Alto, California, USA, Nov. 1993.

[17] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly, 3rd
edition, 2000.

22

